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Abstract 

We analyze the effects of risks and learning on climate change decisions. A two-stage, 

dynamic, climate change stabilization problem is formulated. The explicit incorporation 

of ex-post learning induces risk aversion among ex-ante decisions, which is 

characterized in linear models by VaR- and CVaR-type risk measures. Combined with 

explicit introduction of “safety” constraints, it creates a “hit-or-miss” type decision-

making situation and shows that, even in linear models, learning may lead to either less- 

or more restrictive ex-ante emission reductions. We analyze stylized elements of the 

model in order to identify the key factors driving outcomes, in particular, the critical 

role of quantiles of probability distributions characterizing key uncertainties. 
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Endogenous Risks and Learning in Climate Change Decision 
Analysis 

Brian C. O’Neill  
Yurii Ermoliev  
Tatiana Ermolieva  

1.  Introduction 

Discussions of climate change policies are often framed as a choice between acting now 

or waiting until we know more about the problem (Manne and Richels, 1992; Webster 

2002; Wright and Erickson, 2003). The climate change policy dilemma poses a “hit-or-

miss” type of decision making situation. Emissions of greenhouse gases (GHG) are 

associated with the production and consumption of goods and services, and the 

atmospheric concentration (stock) of these long-lived pollutants may cause irreversible 

damages. On one hand, postponing the reduction of GHG emissions may lead to 

potentially irreversible climate-related impacts, for example, reorganizations of large-

scale ocean circulation patterns or increased frequency of extreme weather-related 

events. On the other hand, if the problem turns out to be less severe than expected, the 

delay will avoid irreversible investments in capital for emissions abatement.  

These discussions are often supported by a traditional expected utility 

maximization model, suggesting either risk-averse ex ante (anticipative) decisions or 

risk-prone ex post (adaptive) decisions that are made only after receiving full 

information. If uncertainty about climate change is resolved over time, the robust 

strategy would definitely be to make only partial ex ante commitments and to keep 

options open until new information is revealed. This approach requires so-called two-

stage recourse stochastic optimization (STO) models (Dantzig and Madansky, 1961; 

Ermoliev and Wets, 1988; Kall and Wallace, 1994; Yastremskij 1983) incorporating 

both ex ante and ex post decisions within a single model. Accordingly, the climate 

change stabilization problem (Section 2) can be formulated as the choice of an ex ante 

risk reduction (stage 1) strategy over a random time horizon taking into account that it 

may need to be adjusted after new information is revealed (stage 2). This decision-

making framework implies, in particular, that the capacity for adaptive decision making 

in stage 2 has to be created ex ante.  

In economics literature, the importance of learning was first discussed in 

connection with irreversible investments in 1974 in Arrow and Fisher (1974) and Henry 

(1974) without an overall two-stage model being formulated. Arrow and Fisher (1974), 

Henry (1974), and Chichilnisky and Heal (1993) have concluded that when future 

damages are uncertain and irreversible, the ability to learn should lead to more active ex 

ante emission reductions. On the other hand, irreversibility of capital may lock an 
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economy into a wasteful use of resources. Viscusi and Zeckhauser (1976), Dixit and 

Pindyck (1994), Ulph and Ulph (1997), and Pindyck (1999) showed that the ability to 

learn in this case should lead to less active ex ante emission reduction. These competing 

effects imply that the net effect of learning on ex ante decisions is an empirical question.  

Nordhaus (1994) and Kolstad (1996) examined the effects of learning by using 

empirically-calibrated integrated assessment models. They concluded that, in fact, 

learning has insignificant effects on ex ante abatement policies because the damage 

losses are not severe enough. A reason for this is that in most integrated climate and 

economics models, climate changes are considered as if they occur continuously and as 

if they can eventually be reversed through ex post adjustments (Wright and Erickson, 

2003). These models also use average damages (i.e., they cannot properly capture the 

effects of abrupt climate change and catastrophic risks (Ermoliev et al, 2000; O’Neill 

and Oppenheimer, 2002; Wright and Erickson, 2003)). A paper by Fisher and Narain 

(2003) analyzes a two-period model with risk characterized by a parameter introducing 

high or low climate change damages. Because overall impacts are evaluated by using 

expected values, the effects of capital irreversibility dominate catastrophic damages in a 

similar way to other models. Epstein (1980) demonstrated that the effects of learning on 

ex ante decisions depend in general on the convexity or concavity of marginal costs, 

which are very restrictive for climate change policy analysis (Ulph and Ulph, 1997). 

In this paper we take a different approach. Instead of using expected damages 

we explicitly introduce safety constraints by formulating the climate change problem 

within the framework of stabilization.  We develop a two-stage dynamic STO model 

and deliberately analyze only stylized linear versions of this model. We show that the 

combination of safety constraints and perspectives of learning induces potentially strong 

risk aversion among ex ante decisions that is characterized by quantile-based VaR and 

CVaR risk measures. As a result we show that, even with a linear net cost function, 

learning may lead to either less or more restrictive emission reductions, depending on 

mitigation costs and probability distributions describing key uncertainties.  

Section 2 characterizes climate change risk by the probability of total 

atmospheric CO2 concentrations exceeding a vital random threshold associated with 

potential ranges of global temperature. It outlines a two-stage dynamic climate change 

stabilization STO model with random durations of stages. In general, this model can be 

solved only numerically and therefore the key factors driving results are difficult to 

identify. For these reasons, we analyze only stylized aspects of the model; these provide 

a clearer picture of the various driving forces and show why the ability to learn in the 

future can lead to either less-restrictive or more-restrictive ex ante abatement policies 

today.  

Section 3 uses a very simple linear two-stage STO model to illustrate that the 

results from empirical models can be rather contradictory, because optimal solutions 

depend on complex nonsmooth interactions among ex ante and ex post decisions, costs, 

and probability distributions. In particular, they induce potentially strong risk aversion 

characterized by risk measures that are used for regulating the safety of nuclear plants 

and insolvency of insurance companies, but also in financial applications, extremal 

value theory (Embrechts et al, 2000), and catastrophic risk management (Ermoliev et al, 

2000). 
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Section 4 analyzes the effects of uncertain costs and random duration of stages. 

It emphasizes the importance of quantiles of probability distributions characterizing key 

uncertainties and shows that without aggressive ex ante commitments, a misperception 

of limited adaptive second-stage capacity may provoke a catastrophe (i.e., exceedance 

of the safety constraint).  

Sections 4 and 5 discuss the controversial effects of incomplete learning and 

nonlinear costs, which more strongly and even unconditionally require coexistence of ex 

ante anticipative and ex post adaptive risk-management decisions.  

A more realistic but still linear dynamic two-stage climate change stabilization 

STO model will be analyzed in Section 6. Similar to Section 3, the explicit 

incorporation of ex ante and ex post decisions induces risk aversions characterized by a 

dynamic version of a CVaR type risk measure. This may create a wrong impression of 

truly risk-based policy analysis and, without explicit introduction of adaptive capacity 

and additional safety constraints, may provoke a catastrophe. In conclusion, Section 7 

emphasizes the importance of the proper treatment of uncertainty, risks, and robust 

decisions, as well as the development of adequate computational approaches.  

2.  Endogenous Climate Change Risk 

Climate change integrated assessment models (see, e.g., (Nordhaus, 1994)) incorporate 

economic and geophysical processes that link economic growth models with the 

accumulation of GHG emissions in the atmosphere. The accumulation of CO2 emissions 

is the main driving force behind global climate change. The process involves complex 

interactions between the atmosphere, the upper oceans and the biosphere, and the deep 

oceans. Current integrated assessment models use different carbon cycle 

parameterizations for computing changes in atmospheric concentrations M(t) resulting 

from CO2 emissions )(te (Schultz and Kasting, 1997). In general, these models are of 

the form  

( 1) [ ( ), ( ), ], 0,1,2,....M t f M t e t tβ+ = =  (1) 

where β  is a vector of model parameters. Values )(tM  are used in integrated 

assessment models to compute the increase in the global average temperature as a 

smooth function of )(tM , and damages are typically computed in the form of smooth 

functions of this temperature increase. The resulting smooth dependence of damage 

functions on global average temperature does not permit the proper modeling of abrupt 

climate changes. A serious underestimation of climate change impacts may also result 

from the use of average global temperature. It is possible that changes in average global 

temperature would be associated with an increase in the frequency of extreme weather-

related events or could trigger singular events with widespread consequences (e.g., the 

disintegration of the West Antarctic Ice Sheet (O’Neill and Oppenheimer, 2002)). 

Therefore, proper modeling of risks is crucial for evaluating climate-change policies.  

Emissions )(te  in (1) depend on a vast variety of uncertainties, denoted by ω , 

and policy variables, denoted by x . In this paper, we assume that emissions ( , )e t ω , 

,...1,0=t , are characterized as random variables defined in a probability space Ω  of 

scenarios ω , ω∈Ω , with a probability measure ( )P dω . Thus, for {1,..., }NΩ= , 



 4

( ) ( ) : P[ ]P d p s sω ω= = = , 
1

( ) 1
N

s
p s

=
=∑ . Frequently we do not indicate the 

dependence of random variables on ω  if this is clear from the context.  

We introduce risk by imposing a safety constraint in the form of an atmospheric 

stabilization target, beyond which it is assumed that the risks of high-impact outcomes 

substantially increase. Let us denote by ( )L ω  the uncertain target level of CO2 

concentration in the atmosphere. The main problem can be formulated as the choice of a 

cost-efficient emission-reduction path that satisfies probabilistic safety constraints on 

vital but uncertain levels of concentrations 

P ( , , ) ( ), 1, 1M t x L t Tω ω γ⎡ ⎤≤ = ≥ −⎢ ⎥⎣ ⎦ , (2) 

where γ  is a risk factor, 0 1γ≤ < , T  is a time horizon that may also be uncertain. In 

the insurance industry, constraints of type (2) regulate risk reserves to prevent 

insolvency. The typical approach to choosing γ in this industry is not based primarily on 

evaluating potential damages, but rather on limiting the chance that the insolvency may 

occur to, say, once in 800 years, 800/1=γ . Similarly, the major failure of a nuclear 

plant is allowed once in 10
7
 years, 710−=γ . Note that these are expected time horizons, 

and therefore there is the possibility that events may occur at any time. 

The concentration-stabilization problem can be formulated in a similar way to 

the catastrophic risk management problem discussed in (Ermoliev et al, 2000). At stage 

1, the emission-reduction path is defined by ex ante decisions )(tx , ,...2,1=t  until a 

random time moment τ  when new information about uncertain variables is revealed. 

The new information may also include a new critical time horizon ( )T ω  for stage 2 ex 

post emission reductions ( , )x t ω , 1,..., ( )t Tτ ω= + . The problem is to minimize total 

emission reduction cost. 

The resulting model can only be solved numerically. Here, instead of using 

numerical simulations, we take a different approach. In the following sections we 

formulate various stylized elements of the model and evaluate them analytically. This 

allows us to keep the discussion on a simple level, which provides a clear picture of the 

potential results. 

Remark 1: The abrupt climate change in (2) is modeled by random ( )L ω , which 

is revealed as a “shock” at random moment ( )τ ω . Despite a smooth and even linear 

dependence of function ( , , )M t x ω  on x , the left-hand side of (2) is, in general, a 

nonsmooth and often even  a discontinuous risk function (Ermoliev and Norkin, 1997; 

Ermoliev and Wets, 1998; Marti, 2005). Endogenous catastrophic collapse is modeled 

as a violation of constraint (2). In general, the learning may not reveal full information 

but perhaps only shift ranges of probability distributions. The learning may also not 

occur at ( ) Tτ ω ≤ , or it may occur very close to ( )T ω . Since the inertia of the system 

may not allow constraints (2) to be fulfilled quickly, the probability of a catastrophe 

conditional on revealed information may drop rapidly below the vital level γ  (i.e., 

constraint (2) emphasizes the importance of proper ex ante actions).  
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3.  Linear Cost Functions 

The following two-stage model is relatively easy to analyze. It provides suggestive 

results and serves as a building block of more general two-stage dynamic models 

(Section 7). Even in its simplest form, it already shows that results from purely 

empirical models can be contradictory regarding the effects of learning on ex ante 

decisions, since optimal solutions depend on complex nonlinear interactions among 

decisions, costs, and probability distributions that characterize uncertainties. 

3.1.  Two-stage model 

A stylized climate change stabilization problem can be formulated as follows: assume 

that there are only two time intervals or periods 2,1=t .  Define by tx , 0≥tx , 2,1=t , a 

feasible level of emission reduction that can be chosen in period t ; tC , 0
t

C >  is the 

known expected abatement cost per unit of emission reduction in period t ; ( )θ ω  is the 

uncertain target value of cumulative emission reductions for two periods. In this 

problem formulation, ( )θ ω  serves as the safety constraint, 1 2 ( )x x θ ω+ ≥ . The 

constraint on minimum emissions reduction can be thought of as a concise way to 

represent several factors (and their uncertainties) that come into play in meeting a target 

based on environmental outcomes such as atmospheric concentrations, global average 

temperature levels, or particular impacts. For example, emissions reductions required to 

meet a target will depend on the target itself (i.e., whether a concentration or 

temperature target is high or low), on reference emissions e(t) (because the absolute size 

of required emissions reductions will depend on the magnitude of uncontrolled 

emissions in the reference case), and on the system mapping emissions to environmental 

outcomes (e.g., parameters of the carbon cycle or climate system). Uncertainty in 

( )θ ω can be thought of as reflecting uncertainty in one or more of these different 

factors. 

Assume uncertainty in ( )θ ω is resolved between periods 1 and 2. The ex ante 

decision 1x  is made before the uncertainty in θ  is resolved, whereas the ex post decision 

2x  is based on known θ  (i.e., 2x  is a function of θ , 2 ( )x θ ). Assume that the ability to 

fulfill risk constraint 1 2 ( )x x θ ω+ ≥  in period 2 is unbounded. The impacts of this 

rather unrealistic assumption (which is often a standard assumption of existing 

integrated assessment model) are analyzed in Section 4. The problem is formulated as 

the minimization of total linear costs 

1 1 2 2( )C x C Ex θ+  (3) 

subject to safety constraints  

1 2 ( )x x θ θ+ ≥ , for all θ . (4) 

Clearly, if the ex ante decision 1x  is irreversible, then the optimal period 2 

decision is { }1*

2 ( ) max 0,x xθ θ= − , that is,  it nonsmoothly depends on period 1 

decision 1x  (path dependence) and θ , providing potentially strong cross-period random 
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interactions among decisions. Optimal period-1 decision *

1x  solves the stochastic 

minimax problem: minimize  

{ }1 2( ) max 0,F x C x C E xθ= + − , 0≥x . (5) 

Remark 2: Although the initial model (3)-(4) is linear in ),( 21 xx , the 

introduction of ex post decision 2x  induces risk aversion among ex ante decisions that is 

defined by implicit nonsmooth (in general) function (5). The following Proposition 

summarizes some important facts about stochastic minimax problem (5). It shows that 

the induced risk attitudes are characterized by VaR (critical quantile) and CVaR risk 

measures (Rockafellar and Uryasev, 2000). In extremal value theory (Embrechts et al, 

2000), CVaR is also known as Mean Shortfall and Mean Excess Loss. 

Proposition: 

(i) )(xF  is a convex function. If [ ]( ) PH z zθ= ≤  is a continuously differentiable 

function, then )(xF  is a strictly convex continuously differentiable function. 

(ii) If 1 2C C> , then 0*

1 =x  and θθ =)(*

2x . If 1 2C C< , then the necessary and 

sufficient condition for optimal *
x  reads: *

x  is the quantile satisfying equation  

[ ] 1 2/P x C Cθ≥ = . (6) 

(iii) The optimal value )( *xF  has two important representations: 

[ ] )(|)( *
2

**
11

*
xIECxxECCxF ≥=≤−+= θθθθθ , (7) 

where ]|[ ⋅⋅E  denotes the conditional expectation, the indicator function ( ) 1I xθ> =  if 

xθ≥  and ( ) 0I xθ≥ =  otherwise.  

 Let us outline the proof.  

(i) The convexity of )(xF  follows from the convexity of function { }max 0, xθ−  which 

is preserved under expectation operation. The strict convexity of )(xF  follows from the 

continuous differentiability of )(xF . 

(ii) The minimization of )(xF  is a specific case of so-called stochastic minimax 

problems [10]. From the general results it follows that [ ]1 2( )F x C C P xθ′ = − ≥ . From 

21 CC < , it  follows that 0)0( <′F , i.e., * 0x >  (assuming 0* =x  we can derive a 

contradiction with assumption 21 CC <  for small x ). As )(xF  is a strictly convex 

function, it follows that (6) is indeed a necessary and sufficient optimality condition. 

(iii) The first representation in (7) follows from (6) and the following rearrangements: 

{ }

( ) ( )

* * * * * * *

1 2 1 2

* * * * * *

1 1 1 1

( ) max 0, |

          | | .

F x C x C E x C x C E x x P x

C x C E x E x x C C E x x

θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤ ⎡ ⎤= + − = + − > > =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − − − ≤ = + − ≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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The second representation in (7) follows from (6) and 

)()(},0max{ **** xPxxIExE ≥−≥=− θθθθ . 

Remark 3: The critical quantile in (6) defines the VaR risk measure, i.e., it 

indicates the magnitude of emission reduction in stage 1 that, with probability 1- C1/C2, 

will be sufficient to meet the safety constraint with no additional reduction required in 

stage 2. The second equation in (7) defines the CVaR risk measure; i.e., the expected 

value of abatement costs that will be necessary in stage 2 if emissions reductions in 

stage 1 are not sufficient to meet the safety constraint. For some distributions it is 

possible to derive *
x  from (6) explicitly. If θ  is uniformly distributed on ],[ ba , then it 

is easy to see that b
C

C
a

C

C
x ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

2

1

2

1* 1  (i.e., *
x  is between optimistic and pessimistic 

scenarios of emissions with weights defined by ratio of costs 1C  and 2C ). 

3.2.  Comparative analysis 

The Proposition of Section 3.1 allows the comparison of cases of perfect information, 

full uncertainty, and uncertainty with learning. Equation (6) shows the critical 

dependence of period 1 optimal decision on the probability distribution H . Assume that 

21 CC < . In the case of perfect information, i.e., when θ  is known at the beginning of 

the first period, both 1x  and 2x  can be chosen as a function of observable θ . Clearly, 

the optimal solution is θ=*
1x , 0*

2 =x . Thus, the first term θ1C  of the first equation in 

(7) represents the expected cost under perfect information. The second term represents 

the expected value of perfect information because this cost would be eliminated if θ  

were known before the first-period emission-reduction decision had to be made (rather 

than afterward as in the learning case). In the case of full uncertainty (“without 

learning”), the optimal decision θ=1x , 02 =x  is also known as the certainty 

equivalent. The possibility of learning combined with explicit introduction of ex post 

decisions specifies optimal period 1 abatements by the quantile satisfying (6). It may 

exceed the certainty equivalent θ  or it may be below this level. As equation (6) shows, 

this depends on the relative values of costs 1C , 2C , and the probability distribution H . 

For example, if 2/1/ 21 =CC  and θ  has a normal distribution, then optimal ex ante 

abatement coincides with the certainty equivalent θ=*
1x . For non-normal probability 

distributions, the optimal abatements can be below or above θ .
1
  

Remark 4: The certainty equivalent solution in the case of full uncertainty (no learning) 

does not satisfy (4) for all θ ,  which may lead to a catastrophic collapse of high 

probability. The only way to fulfill the safety constraint (4) is to choose 1x  from the 

                                                 
1
 An asymmetric probability distribution can be caused, for example, by the interaction of a symmetric 

probability distribution with an environmental constraint.  For example, if the probability density function 

for e(ω) is normal, the distribution for θ(ω) can still be asymmetric if there is an atmospheric 

concentration constraint that does not require emissions reductions for all ω. 
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worst-case scenario as max ( )
ω
θ ω , ω ∈Ω . Clearly, this is an unrealistic and extremely 

costly solution. This calls for the explicit introduction of safety constraint (2) to provide 

a trade-off between cost effectiveness and risk. The optimal solution under full 

uncertainty is now defined as minimal 1x , γxx =1 , satisfying equation 

1[ ] 1P x θ γ≥ = −  (since 21 CC < , 02 =x ). Clearly, the risk-based solution under full 

uncertainty γxx =1  may be greater or less than θ , depending on γ , 21 / CC , and 

probability distribution H . Imperfect learning (Section 4.2) may shift the ranges (the 

support) of the probability distribution requiring ex ante abatement that is more or less-

aggressive than γx . 

4.  Uncertain Costs and Outcomes 

4.1.  Uncertain cost 

This section illustrates that the use of expected costs (a common assumption of standard 

integrated assessment models (Wright and Erickson, 2003)) can be misleading, which 

calls for the use of quantiles rather than expectations. Assume that stage 2 cost 2C  in 

(3) is observable (ex-post) random variable, 2( )C ω , 2 2( )C EC ω= , 1 0C > , 2 0C > . 

Function (5) is written as })(,0max{)()( 21 xECxCxF −+= ωθω . The optimal ex ante 

abatements satisfy equation 0)()()( 21
' =≥−= xIECCxF θω , i.e., risk attitudes 

induced among ex ante decisions are now characterized by more complicated risk 

measures than the CVaR risk measure of Section 3.1. Let us simplify the analysis by 

assuming as in Arrow and Fisher, (1974) that dθ= , where d  is a known 

(deterministic) positive number. Then, without learning of cost 2 ( )C ω , the problem is to 

minimize the expected cost 1 1 2 2C x C x+ , where 1 2x x d+ = , 01 ≥x , 02 ≥x . If 

21 CC < , then the solution dx =*
1 , 0*

2 =x  is optimal. The ability to learn before the 

period 2 decision is made implies that a decision maker may reject emissions reduction 

in period 1, with a likelihood given by the probability that 2 1( )C Cω < . This poses the 

important question about the applicability of expected costs, which is also the key issue 

for evaluating the potential catastrophic impacts characterized by skewed and 

multimodal distributions (see, e.g., Figures 5, 7 in Ermoliev et al, 2000). This requires 

the use of quantiles, say, the median rather then expected values. 

Consider random two-period costs ))(( 1211 xdCxC −+ ω . The median of 

))(( 1211 xdCxC −+ ω  is ))(( 1211 xdmedCxC −+ ω . Assume that 5.31 =C , 

2( ) 3C ω =−  with probability 1/3, 2( ) 15C ω =  with probability 1/3, and with probability 

1/3 it is uniformly distributed in the interval [2,4]. Thus, 2 ( ) 5EC ω = , 2 ( ) 3medC ω = . 

Therefore, the optimal solution using expectations without learning is dx =*
1 , 0*

2 =x . 

Let us notice that the expected value 2 ( ) 5EC ω =  does not occur in reality, i.e., unlike 

the median it does not belong to the support of the distribution of  2( )C ω . The use of 

the median leads to the optimal solution 0*
1 =x , dx =*

2 , i.e., it reverses the previous 
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conclusion regarding the optimal solution. Assume now that  111 =C , 2 ( ) 5C ω =−  

with probability 1/5, 2 ( ) 5C ω =  with probability 1/5 and with probability 3/5 it is 

uniformly distributed in interval ]16,14[ . In this case, 2 ( ) 9EC ω = , i.e., the optimal 

solution without learning is 0*
1 =x , dx =*

2 . Since  2 ( ) 14medC ω > , then the use of the 

median leads to the opposite optimal solution dx =*
1 , 0*

2 =x . 

Remark 5: An approach for minimizing quantiles follows from Section 3.1. It 

shows that the minimization of a quantile of },0max{)(211 xCxC −+ βω  can be 

reduced to minimization of a convex function 

1 2max{0, ( ) max{0, } }y E C x C x yµ ω β+ + − −  with respect to ),( yx . The solution of 

this STO problem ),( **
yx  satisfies constraints  

µ
βω 1

]},0max{)([ 21 =≥−+ yxCxCP .  

4.2.  Uncertain durations of stages: Limited adaptive capacity 

The general two-stage problem (Section 2) with constraint (2) has a random duration of 

stages. There are at least two reasons this duration may be uncertain. First, in cases with 

learning, the timing of new information may be uncertain. For example, if learning is 

slow, the second period may occur late, while if learning is fast the second period will 

begin early. In addition, inertia in socio-economic systems may affect the duration of 

stages. For example, a given emissions reduction in period 1 may take a long time in 

systems with substantial inertia, but less time in more flexible systems (Ha-Duong et al, 

1997). The path-dependencies (inertia) of the socio-economic systems producing 

greenhouse gasses are critical for dealing with abrupt changes. Without inertia, the 

switching from one emission path to another would be instantaneous. In reality, energy 

production systems cannot be changed overnight. As a result, preparedness programs 

may be only partially implemented because of the potential lack of time in both stages. 

The proper treatment of these effects requires the explicit introduction of random 

durations of stages. The following show that a delay with proper ex ante abatements 

may result in a violation of constraint (2).  

In its simplest form, the uncertain duration of stages can be modeled by 

constraints β≤2x  with positive random β  which becomes known from learning at 

stage 2. In other words, it is assumed that the uncertain duration of stage one (with fixed 

two period time horizon  T ) affects the capacity for reductions in period 2 (for example, 

a longer period 1 reduces the scope for reductions in period 2 given its shorter duration). 

Without the safety constraint of type (2), the optimal stage 2 decision 

{ }12 min ,max 0,x xβ θ⎡ ⎤= −⎣ ⎦  cannot in general satisfy safety constraints (4) for all θ . As 

a consequence, the probability of a catastrophe can be rather high, calling for explicit 

introduction of type (2) safety constraint [ ]1 2 1P x x θ γ+ ≥ = − . Since 2x β≤ , this 

requires ex-ante emission reduction commitments γxx ≥1 , where γx  is minimal non-

negative x  satisfying equation  [ ] 1P x θ β γ≥ − = − . Therefore, in order to prevent a 
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catastrophic collapse, there must exist regulations on minimal ex-ante emission 

reductions sufficient to keep open the possibility of satisfying the safety constraint in 

stage 2, which can be evaluated by analyzing STO problems with safety constraints (2). 

4.3.  Incomplete learning and safety constraints 

Consider a very realistic case where the learning affects only the prior distribution 

)(zH , in other words, it shifts the range of uncertainty.  As the optimal period 1 

decision of Section 3.1 is a quantile of  )(zH , learning may dramatically affect this 

decision in different directions. Let us assume that ( ) [ ]H z P zθ= ≤  is a mixture 

∫== )(),(),()( ydGzyHzHEzH ξξ  of distribution ),( zH ξ  with unknown ξ  

characterized by a probability distribution ( ) [ ]G y P yξ= ≤ , which may reflect 

polarized views on scenarios of climate changes. The learning reveals only ξ  at the 

beginning of period 2.  For example,  )(zH  can be a mixture of distributions ),( zH ξ  

with probability mass concentrated in different subregions from the support of )(zH . If 

the support of  ),( zH ξ  is a singleton, then the learning of ξ  reveals the true value of θ . 

For the sake of illustration, let )(zH  be a mixture of two distributions )(0 zH  and 

)(1 zH , that is, )()1()( 10 zHzH ξξ −+ , where 0=ξ  with probability p  and 1=ξ  with 

probability p−1 , that is, 0 1( ) ( ) (1 ) ( )H z pH z p H z= + − . Since only ξ  is observed, the 

stage 2 decision )(2 ξx  can not fulfill constraints (4), and the safety constraint has to be 

written as in (2): 

[ ]1 2( ) ( ) 1P x x ξ θ ξ γ+ ≥ ≥ − , (8) 

where ( )θ ξ  has the probability distribution )(zH ξ . For a given ξ  and γ , let us define 

)(ξγz  as minimal z , satisfying equation [ ]( ) 1P z θ ξ γ≥ = − . Then equation (8) is 

equivalent to the equation 1 2( ) ( )x x zγξ ξ+ ≥ , which is similar to (4). The optimal 

period 2 decision { }12 max 0, ( )x z xγ ξ= − , and optimal 1x  has to minimize 

{ } { }1 2( ) max 0, (0) (1 ) max 0, (1)F x C x C p z x p z xγ γ
⎡ ⎤= + − + − −⎢ ⎥⎣ ⎦ . 

As ξ  has a discrete probability distribution, function )(xF  does not have 

continuous derivatives. Therefore, the optimality condition cannot be derived from the 

Proposition of Section 3.1. Assume that )1()0( γγ zz < . )(xF  is a piece-wise continuous 

linear function. Namely, for 0 (0)x zγ≤ < ,  

( ) ( )[ ] ( ) ).()1()1()0()( 22121 ξγγγ zCxCCxzpxzpCxCxF +−=−−+−+=  

For (0) (1)z x zγ γ≤ < ,  
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( ) ( )1 2 1 2 2( ) (1 ) (1) (1 ) (1 ) (1)F x C x C p z x C C p x C p zγ γ= + − − = − − + − , and 

for  

)1(γzx ≥ , xCxF 1)( = .  

The optimal ex-ante solution hedges against different contingencies. It is 

characterized as follows: 0=x , if 1 2C C> . Otherwise, )0(γzx = , if 

1 2(1 ) 0C C p− − > , and )1(γzx = , if 1 2(1 ) 0C C p− − < .  

Since 21 CC < , in general it pays to make reductions in period 1 that are as large 

as possible. After learning takes place at the end of period 1, the optimal solution is to 

make reductions such that the total reduction is either )0(z  or )1(z . Thus, the minimal 

first period reduction is )0(z . If first period costs are very low, or the chance that 1=ξ  

is very high, then  it is optimal to make larger first period reduction )1(z , accepting the 

chance that 0=ξ  and that reductions (1) (0)z z−  will have been unnecessary. 

Let us compare this ex ante period 1 optimal “with-learning” solution  with the 

optimal “without-learning” solution  γzx =∗
1 , 02 =∗x  derived from minimization of (4) 

under safety constraint 1 2[ ] 1P x x θ γ+ ≥ ≥ − , i.e., 1 2x x zγ+ ≥ , where γz  is the 

minimal z  satisfying constraint [ ] 1P z θ γ≥ ≥ − . Assume that )(0 zH , )(1 zH  have 

continuous derivatives, the support of distribution )(0 zH  is interval ],[ 00 ba , and the 

support of )(1 zH  is interval ],[ 11 ba , where 1 0a b> . If 1 2(1 ) 0C C p− − < , then the 

optimal “with-learning” period 1 solution )1(γzx = . If ],[ 11 bax ∈ , then 

[ ] 1(1 ) ( )P x p p H xθ≥ = + − . Since γγ −= 1))1((1 zH , then 

[ ] (1 )(1 ) 1P x p p pθ γ γ γ≥ = + − − = − +  for )1(γzx = . As 0pγ > , then the optimal 

“without-learning” decision x γθ=   satisfying [ ] 1P x θ γ≥ = −  is less demanding 

(smaller) than )1(γzx = , i.e., learning increases the optimal ex ante emission 

reductions. This conclusion is reversed in the case 1 2(1 ) 0C C p− − > . Indeed, let 

],[ 00 bax ∈ . Then, [ ] 0( )P x pH xθ≥ = , 0( (0)) 1H zγ γ= −  and for )0(γzx = , 

[ ] (1 )P x pθ γ≥ = −  (i.e., the optimal “without-learning” decision x γθ=  is greater than 

the optimal “with-learning” decision )0(γzx = ).  

5.  Nonlinear Abatement Cost 

It is well known that abatement-cost functions are nonlinear (Ha-Duong et al, 1997). 

This section illustrates that, in contrast to the linear case, nonlinear cost functions call 

more strongly for the coexistence of ex ante and ex post decisions. It is interesting to 

compare the case of linear functions with the quadratic cost functions used in some 

integrated assessment models. Assume that the cost functions of both periods 
2)( xCxC ii =  with positive 1C , 2C . Cost function (4) takes on the form  
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{ }( )
22

1 2( ) max 0,F x C x C E xθ= + −  and ( )1 2( ) 2 2 [ ]F x C x C E x I xθ θ′ = − − ≥ . 

Therefore, 2(0) 2 0F C Eθ′ =− < , assuming that 0Eθ>  with a positive probability. 

Thus, this case calls for coexistence of period 1 and period 2 decisions independently of 

1C , 2C . Compare this to the case of linear costs in Section 3.1, where 1 2(0)F C C′ = −  

if 21 CC < ; i.e., non-zero first period reductions are called for only if costs are less in 

period 1. With quadratic costs, period 1 reductions are optimal even if 1 2C C>  because 

marginal costs can still be lower in period 1 if larger period 2 reductions will be 

required.  

Optimal ex ante abatements are characterized by more complicated than (6) 

equation 1 2 ( ) ( )C x C E x I xθ θ= − ≥ . In the case of normally distributed θ , 

2
2

2
1 )(

2

1
)( xECxCxF −+= θ . From the optimality 1 22 ( ) 0C x C x Eθ+ − =  it follows 

that optimal )2/( 212 CCCx += θ , i.e., it is defined only by mean value θ . This 

conclusion is false for non-normal distributions, although standard integrated 

assessment models often use only average values θ . 

It is important to illustrate some typical situations that may occur in the case of 

non-smooth, piece-wise linear functions commonly used in emission-control problems 

where technology switches may call for more intensive emission reduction. These 

functions implicitly impose upper or lower bounds on ex ante emission reductions. 

Assume that xCxC 22 )( =  and )(1 xC  is a piece-wise linear function xCxC 1

11 )( =  for 

0 x a≤ ≤  and aCaxCxC 1

1

2

11 )()( +−=  for ax ≥ , where 2

2

1 CC >  and 2

1

1 CC < . It is 

easy to see that the optimal ex ante solution has to satisfy the additional requirement 

ax ≤1 . As 2

1

1 CC <  and 2
2
1 CC > , the optimal ex ante decision is defined as follows: 

let x  be the solution of equation 2
1
1 /][ CCxP =>θ . The optimal period 1 decision 

ax =∗
1  if ax > , and xx =∗

1  for x a≤ . Assume that xCxC 11 )( = , and xCxC 1

22 )( =  

for 0 x a≤ ≤ ; aCaxCxC 1

2

2

22 )()( +−=  for ax ≥ , where 1

21 CC > , 2

21 CC < . Consider 

solution x   of the equation 2
1
1 /][ CCxP =>θ . It is easy to see that the optimal period-1 

decision xx =∗
1  for ax ≥  and 01 =∗x  for ax < .  

 

6.  A Dynamic Stabilization Problem 

The general stabilization problem is outlined in Section 2. Its proper formulation 

requires a catastrophe-generating submodel (i.e., a submodel of CO2-generating 

activities). Therefore, in its rather general form, the problem becomes similar to 

catastrophic-risk-management problems discussed in [9]. In its simplest form, the 

dynamic two-stage model has strong connections with dynamic versions of CVaR risk 

measures.  
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Assume that CO2 emission paths are characterized by exogenous scenarios as in 

Section 3. Let us consider ∑= =
t
k kt xR 0 , where decision variables 0≥kx , tk ,..,1,0= , 

t T≤ . We can think of kx  as a feasible level of CO2 emission reduction at the 

beginning of period k . At time 0=t   the target value on total emission reduction tR  in 

period t  is given as a random variable tρ . It is assumed that the exact value of tρ  is 

revealed at a random time τ=t . Since τ  is uncertain, the decision path 

),...,,( 10 Txxxx =  for the whole time horizon has to be chosen ex ante in period 0t =  to 

“hit” the target tρ , ττ ρ≥R , at τ=t  in a sense specified further by (10). At random 

τ=t , the decision path can be revised for the remaining available time. Similar to the 

model of Section 3.1, consider a stream of linear random costs 

∑ −+= = =
T
t tttttt IRdxcxv 0 }],0max{[)( τρ , where 0

t
c > , 0

t
d > , Tt ,...,1,0=  are 

known ex-ante and ex-post abatement costs.  The expected value of ( )xν  can be written 

as 

{ }0 0
( ) max 0,

T

t t tt t
V x c x Ed x

τ
τ τρ= =

= + −∑ ∑ .  (9) 

Let us consider a path *
x  minimizing )(xV  subject to 0≥tx , Tt ,...,1,0= . 

Assume that ( )V x  is a continuously differentiable function (e.g., a component of 

random vector 0 1( , ,..., )
T

ρ ρ ρ ρ=   has a continuous density function). Assume also that, 

so far, there exists a positive optimal solution ),...,,( **
1

*
0

*
Txxxx = , 0* >tx , Tt ,...,1,0= . 

Then, from the optimality condition for stochastic minimax problems (see, e.g., 

discussion in [4], [10]), it follows that for *
xx = , 

( )∑ ∑ ≤−= = =
t
k

t
k kkkktx xEIdpcV

t 0 0
ρ  or  

0 0
P[ ] 0

t

t t

x t k k k kk k
V c p d x ρ

= =
= − ≤ =∑ ∑ , Tt ,...,1,0= , where tp  is the probability 

that τ  occurs first time at t . From this sequentially for Tt ,...,1,0= ,  it follows that  

00000 /][ dpcxP =< ρ , ttttk
t
k k dpccxP /)(][ 10 −= −=<∑ ρ , Tt ,...,1,0= . (10)  

It is easy to see that from (9) it follows that 

[ ] [ ] [ ])()(...)()()()( *
1

*
1101

*
0000

*
TTTTTi RIEccRIEccRIEcxV >−++>−+>= − ρρρρρρ

which can be viewed as a dynamic CVaR risk measure. 

Remark 6: Equations (9) are derived from the existence of the positive optimal 

solution *
x .  It is easy to see that this solution follows from 1/ 000 <dpc , 

1( ) / 1
t t t t

c c p d−− <  and the monotonicity of quantiles 
t
β , 0 1 ...

T
β β β< < <  defined by 

equations  

0 0 0 0 0[ ] /P c p dβ ρ< = , 1[ ] ( ) /
t t t t t t

P c c p dβ ρ −< = − , Tt ,...,1,0= . 
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If probability tp  rapidly decreases to 0, then from (9) it follows that ex-ante 

abatements are positive for a relatively short initial interval defined by inequality 

1/)( 1 <− − tttt dpcc . This misleading conclusion is due to a strong assumption of 

unlimited capacity for emissions reductions, which is a standard assumption of climatic-

economic integrated assessment models (see discussion in Ha-Duong, 1997 and Wright 

and Erickson, 2003). Similar to conclusions of Section 4.2, this requires an adequate 

treatment of safety constraints (2) to prevent catastrophes. 

7.  Concluding Remarks 

This paper analyzes the effects of risks and learning on climate change decisions using a 

two-stage, dynamic model that assumes a stabilization constraint.  It shows that learning 

can lead either to larger or smaller first period emissions reductions, compared to the 

optimal reduction under uncertainty without learning, and that this effect can either be 

large or small.  The direction and magnitude of the learning effect is determined by a 

number of interacting factors.  For example, in a simple linear model with deterministic 

mitigation costs but uncertainty in total required emissions reductions, the learning 

effect depends on how mitigation costs evolve over time, the shape of the uncertainty 

distribution in required emissions reductions, the confidence with which the safety 

constraint (i.e., stabilization level) is desired to be met, and, in the case of incomplete 

learning, the probability distribution describing the anticipated learning possibilities.  If 

costs are uncertain, but the emissions reduction target is known, the problem 

emphasizes the use of risk adjusted costs (e.g., quantiles) rather than expected values. 

Introducing a more realistic nonlinear cost function with increasing marginal costs 

induces a higher level of first period emissions reductions compared to the linear case.  

We also analyze the case of random duration of stages as a proxy either for uncertain 

timing of learning or uncertain inertia in socio-economic systems, showing how this 

consideration can induce a minimum level of first period reductions.  Finally, framing 

the problem in dynamic terms as a multi-period problem with an uncertain time path of 

required cumulative emissions reductions shows that the problem has strong 

connections with dynamic versions of VaR risk measures. Given the multiple influences 

on the learning effect, we conclude that drawing practical conclusions on the likely 

effect of learning on climate change decisions is an empirical question requiring 

analysis with models capable of adequately representing endogenous risks, abrupt 

changes, in particular, abrupt learning, inertia, and path dependent costs. 
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