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Abstract

We analyze the effects of risks and learning on climate change decisions. A two-stage,
dynamic, climate change stabilization problem is formulated. The explicit incorporation
of ex-post learning induces risk aversion among ex-ante decisions, which is
characterized in linear models by VaR- and CVaR-type risk measures. Combined with
explicit introduction of “safety” constraints, it creates a ‘“hit-or-miss” type decision-
making situation and shows that, even in linear models, learning may lead to either less-
or more restrictive ex-ante emission reductions. We analyze stylized elements of the
model in order to identify the key factors driving outcomes, in particular, the critical
role of quantiles of probability distributions characterizing key uncertainties.
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Endogenous Risks and Learning in Climate Change Decision
Analysis

Brian C. O’Neill
Yurii Ermoliev
Tatiana Ermolieva

1. Introduction

Discussions of climate change policies are often framed as a choice between acting now
or waiting until we know more about the problem (Manne and Richels, 1992; Webster
2002; Wright and Erickson, 2003). The climate change policy dilemma poses a ‘“hit-or-
miss” type of decision making situation. Emissions of greenhouse gases (GHG) are
associated with the production and consumption of goods and services, and the
atmospheric concentration (stock) of these long-lived pollutants may cause irreversible
damages. On one hand, postponing the reduction of GHG emissions may lead to
potentially irreversible climate-related impacts, for example, reorganizations of large-
scale ocean circulation patterns or increased frequency of extreme weather-related
events. On the other hand, if the problem turns out to be less severe than expected, the
delay will avoid irreversible investments in capital for emissions abatement.

These discussions are often supported by a traditional expected utility
maximization model, suggesting either risk-averse ex ante (anticipative) decisions or
risk-prone ex post (adaptive) decisions that are made only after receiving full
information. If uncertainty about climate change is resolved over time, the robust
strategy would definitely be to make only partial ex ante commitments and to keep
options open until new information is revealed. This approach requires so-called two-
stage recourse stochastic optimization (STO) models (Dantzig and Madansky, 1961;
Ermoliev and Wets, 1988; Kall and Wallace, 1994; Yastremskij 1983) incorporating
both ex ante and ex post decisions within a single model. Accordingly, the climate
change stabilization problem (Section 2) can be formulated as the choice of an ex ante
risk reduction (stage 1) strategy over a random time horizon taking into account that it
may need to be adjusted after new information is revealed (stage 2). This decision-
making framework implies, in particular, that the capacity for adaptive decision making
in stage 2 has to be created ex ante.

In economics literature, the importance of learning was first discussed in
connection with irreversible investments in 1974 in Arrow and Fisher (1974) and Henry
(1974) without an overall two-stage model being formulated. Arrow and Fisher (1974),
Henry (1974), and Chichilnisky and Heal (1993) have concluded that when future
damages are uncertain and irreversible, the ability to learn should lead to more active ex
ante emission reductions. On the other hand, irreversibility of capital may lock an



economy into a wasteful use of resources. Viscusi and Zeckhauser (1976), Dixit and
Pindyck (1994), Ulph and Ulph (1997), and Pindyck (1999) showed that the ability to
learn in this case should lead to less active ex ante emission reduction. These competing
effects imply that the net effect of learning on ex ante decisions is an empirical question.
Nordhaus (1994) and Kolstad (1996) examined the effects of learning by using
empirically-calibrated integrated assessment models. They concluded that, in fact,
learning has insignificant effects on ex ante abatement policies because the damage
losses are not severe enough. A reason for this is that in most integrated climate and
economics models, climate changes are considered as if they occur continuously and as
if they can eventually be reversed through ex post adjustments (Wright and Erickson,
2003). These models also use average damages (i.e., they cannot properly capture the
effects of abrupt climate change and catastrophic risks (Ermoliev et al, 2000; O’Neill
and Oppenheimer, 2002; Wright and Erickson, 2003)). A paper by Fisher and Narain
(2003) analyzes a two-period model with risk characterized by a parameter introducing
high or low climate change damages. Because overall impacts are evaluated by using
expected values, the effects of capital irreversibility dominate catastrophic damages in a
similar way to other models. Epstein (1980) demonstrated that the effects of learning on
ex ante decisions depend in general on the convexity or concavity of marginal costs,
which are very restrictive for climate change policy analysis (Ulph and Ulph, 1997).

In this paper we take a different approach. Instead of using expected damages
we explicitly introduce safety constraints by formulating the climate change problem
within the framework of stabilization. We develop a two-stage dynamic STO model
and deliberately analyze only stylized linear versions of this model. We show that the
combination of safety constraints and perspectives of learning induces potentially strong
risk aversion among ex ante decisions that is characterized by quantile-based VaR and
CVaR risk measures. As a result we show that, even with a linear net cost function,
learning may lead to either less or more restrictive emission reductions, depending on
mitigation costs and probability distributions describing key uncertainties.

Section 2 characterizes climate change risk by the probability of total
atmospheric CO, concentrations exceeding a vital random threshold associated with
potential ranges of global temperature. It outlines a two-stage dynamic climate change
stabilization STO model with random durations of stages. In general, this model can be
solved only numerically and therefore the key factors driving results are difficult to
identify. For these reasons, we analyze only stylized aspects of the model; these provide
a clearer picture of the various driving forces and show why the ability to learn in the
future can lead to either less-restrictive or more-restrictive ex ante abatement policies
today.

Section 3 uses a very simple linear two-stage STO model to illustrate that the
results from empirical models can be rather contradictory, because optimal solutions
depend on complex nonsmooth interactions among ex ante and ex post decisions, costs,
and probability distributions. In particular, they induce potentially strong risk aversion
characterized by risk measures that are used for regulating the safety of nuclear plants
and insolvency of insurance companies, but also in financial applications, extremal
value theory (Embrechts et al, 2000), and catastrophic risk management (Ermoliev et al,
2000).



Section 4 analyzes the effects of uncertain costs and random duration of stages.
It emphasizes the importance of quantiles of probability distributions characterizing key
uncertainties and shows that without aggressive ex ante commitments, a misperception
of limited adaptive second-stage capacity may provoke a catastrophe (i.e., exceedance
of the safety constraint).

Sections 4 and 5 discuss the controversial effects of incomplete learning and
nonlinear costs, which more strongly and even unconditionally require coexistence of ex
ante anticipative and ex post adaptive risk-management decisions.

A more realistic but still linear dynamic two-stage climate change stabilization
STO model will be analyzed in Section 6. Similar to Section 3, the explicit
incorporation of ex ante and ex post decisions induces risk aversions characterized by a
dynamic version of a CVaR type risk measure. This may create a wrong impression of
truly risk-based policy analysis and, without explicit introduction of adaptive capacity
and additional safety constraints, may provoke a catastrophe. In conclusion, Section 7
emphasizes the importance of the proper treatment of uncertainty, risks, and robust

decisions, as well as the development of adequate computational approaches.

2. Endogenous Climate Change Risk

Climate change integrated assessment models (see, e.g., (Nordhaus, 1994)) incorporate
economic and geophysical processes that link economic growth models with the
accumulation of GHG emissions in the atmosphere. The accumulation of CO, emissions
is the main driving force behind global climate change. The process involves complex
interactions between the atmosphere, the upper oceans and the biosphere, and the deep
oceans. Current integrated assessment models use different carbon cycle
parameterizations for computing changes in atmospheric concentrations M(t) resulting
from CO, emissions e(f) (Schultz and Kasting, 1997). In general, these models are of

the form
M(t+1)= f[M(1),e(t),3], t=0,1,2,.... (1)

where (3 is a vector of model parameters. Values M (¢) are used in integrated
assessment models to compute the increase in the global average temperature as a
smooth function of M (¢), and damages are typically computed in the form of smooth
functions of this temperature increase. The resulting smooth dependence of damage
functions on global average temperature does not permit the proper modeling of abrupt
climate changes. A serious underestimation of climate change impacts may also result
from the use of average global temperature. It is possible that changes in average global
temperature would be associated with an increase in the frequency of extreme weather-
related events or could trigger singular events with widespread consequences (e.g., the
disintegration of the West Antarctic Ice Sheet (O’Neill and Oppenheimer, 2002)).
Therefore, proper modeling of risks is crucial for evaluating climate-change policies.

Emissions e(f) in (1) depend on a vast variety of uncertainties, denoted by w,
and policy variables, denoted by x. In this paper, we assume that emissions e(?,w),
t =0,1,..., are characterized as random variables defined in a probability space €2 of
scenarios w, we€ (), with a probability measure P(dw). Thus, for Q={1,...N},



P(dw) = p(s):=Plw=y+], Z:]:l p(s)=1. Frequently we do not indicate the
dependence of random variables on w if this is clear from the context.

We introduce risk by imposing a safety constraint in the form of an atmospheric
stabilization target, beyond which it is assumed that the risks of high-impact outcomes
substantially increase. Let us denote by L(w) the uncertain target level of CO,
concentration in the atmosphere. The main problem can be formulated as the choice of a
cost-efficient emission-reduction path that satisfies probabilistic safety constraints on
vital but uncertain levels of concentrations

P|M (t,x,w) < L(w),t =1,T|>1—7, )

where ¥ is a risk factor, 0 <~ <1, T is a time horizon that may also be uncertain. In

the insurance industry, constraints of type (2) regulate risk reserves to prevent
insolvency. The typical approach to choosing vy in this industry is not based primarily on
evaluating potential damages, but rather on limiting the chance that the insolvency may
occur to, say, once in 800 years, ¥ =1/800. Similarly, the major failure of a nuclear

plant is allowed once in 107 years, ¥ =107". Note that these are expected time horizons,
and therefore there is the possibility that events may occur at any time.

The concentration-stabilization problem can be formulated in a similar way to
the catastrophic risk management problem discussed in (Ermoliev et al, 2000). At stage
1, the emission-reduction path is defined by ex ante decisions x(¢), t=1,2,... until a
random time moment 7 when new information about uncertain variables is revealed.
The new information may also include a new critical time horizon 7'(w) for stage 2 ex
post emission reductions x(¢,w), t =7+1,...,T(w). The problem is to minimize total
emission reduction cost.

The resulting model can only be solved numerically. Here, instead of using
numerical simulations, we take a different approach. In the following sections we
formulate various stylized elements of the model and evaluate them analytically. This
allows us to keep the discussion on a simple level, which provides a clear picture of the
potential results.

Remark 1: The abrupt climate change in (2) is modeled by random L(w) , which

is revealed as a “shock” at random moment 7(w). Despite a smooth and even linear
dependence of function M (¢,x,w) on x, the left-hand side of (2) is, in general, a
nonsmooth and often even a discontinuous risk function (Ermoliev and Norkin, 1997;
Ermoliev and Wets, 1998; Marti, 2005). Endogenous catastrophic collapse is modeled
as a violation of constraint (2). In general, the learning may not reveal full information
but perhaps only shift ranges of probability distributions. The learning may also not
occur at 7(w) < T, or it may occur very close to 7T (w). Since the inertia of the system
may not allow constraints (2) to be fulfilled quickly, the probability of a catastrophe
conditional on revealed information may drop rapidly below the vital level ¥ (i.e.,
constraint (2) emphasizes the importance of proper ex ante actions).



3. Linear Cost Functions

The following two-stage model is relatively easy to analyze. It provides suggestive
results and serves as a building block of more general two-stage dynamic models
(Section 7). Even in its simplest form, it already shows that results from purely
empirical models can be contradictory regarding the effects of learning on ex ante
decisions, since optimal solutions depend on complex nonlinear interactions among
decisions, costs, and probability distributions that characterize uncertainties.

3.1. Two-stage model

A stylized climate change stabilization problem can be formulated as follows: assume
that there are only two time intervals or periods ¢ =1,2. Define by x,, x, 20, r=12,a
feasible level of emission reduction that can be chosen in period ¢; C,, C, >0 is the
known expected abatement cost per unit of emission reduction in period 7; 6(w) is the

uncertain target value of cumulative emission reductions for two periods. In this
problem formulation, 6(w) serves as the safety constraint, x, 4+ x,>0(w). The

constraint on minimum emissions reduction can be thought of as a concise way to
represent several factors (and their uncertainties) that come into play in meeting a target
based on environmental outcomes such as atmospheric concentrations, global average
temperature levels, or particular impacts. For example, emissions reductions required to
meet a target will depend on the target itself (i.e., whether a concentration or
temperature target is high or low), on reference emissions e(t) (because the absolute size
of required emissions reductions will depend on the magnitude of uncontrolled
emissions in the reference case), and on the system mapping emissions to environmental
outcomes (e.g., parameters of the carbon cycle or climate system). Uncertainty in
O(w) can be thought of as reflecting uncertainty in one or more of these different

factors.

Assume uncertainty in 6(w)is resolved between periods 1 and 2. The ex ante
decision x, is made before the uncertainty in € is resolved, whereas the ex post decision
x, is based on known 6 (i.e., x, is a function of 0, x,(f)). Assume that the ability to
fulfill risk constraint x, 4+ x, > 6(w) in period 2 is unbounded. The impacts of this

rather unrealistic assumption (which is often a standard assumption of existing
integrated assessment model) are analyzed in Section 4. The problem is formulated as
the minimization of total linear costs

C,x, + C,Ex,(0) 3)

subject to safety constraints
x,+x,(0)>0, forall 0. 4)

Clearly, if the ex ante decision x, is irreversible, then the optimal period 2
decision is x,(f) = max {O,@—xl}, that is, it nonsmoothly depends on period 1

decision x, (path dependence) and 6, providing potentially strong cross-period random



. . . . . . . . * .
interactions among decisions. Optimal period-1 decision x; solves the stochastic
minimax problem: minimize

F(x)=Cx+C,Emax{0,0 —x}, x>0. (5)

Remark 2: Although the initial model (3)-(4) is linear in (x,,x,), the

introduction of ex post decision x, induces risk aversion among ex ante decisions that is

defined by implicit nonsmooth (in general) function (5). The following Proposition
summarizes some important facts about stochastic minimax problem (5). It shows that
the induced risk attitudes are characterized by VaR (critical quantile) and CVaR risk
measures (Rockafellar and Uryasev, 2000). In extremal value theory (Embrechts et al,
2000), CVaR is also known as Mean Shortfall and Mean Excess Loss.

Proposition:

(i) F(x) is a convex function. If H(z)=P[#<z] is a continuously differentiable
function, then F(x) is a strictly convex continuously differentiable function.

() If C, >C,, then xl* =0 and x;(0)=6’. If C,<C,, then the necessary and

sufficient condition for optimal x~ reads: x  is the quantile satisfying equation

P[0>x]=C/C,. (6)

(iii) The optimal value F (x") has two important representations:
F(x')=C,0+C Ex'~010<x"|=C,EQ@0> 1), (7)
where E[-1-] denotes the conditional expectation, the indicator function 7(f > x) =1 if

0> x and 1(6 > x) =0 otherwise.

Let us outline the proof.

(i) The convexity of F(x) follows from the convexity of function max {0,9 — x} which
is preserved under expectation operation. The strict convexity of F(x) follows from the
continuous differentiability of F(x).

(i1)) The minimization of F(x) is a specific case of so-called stochastic minimax
problems [10]. From the general results it follows that F'(x) = C, —C,P[f > x|. From

C,<C,, it follows that F’(0)<0, i.e.,, x >0 (assuming x =0 we can derive a
contradiction with assumption C; <C, for small x). As F(x) is a strictly convex
function, it follows that (6) is indeed a necessary and sufficient optimality condition.

(ii1) The first representation in (7) follows from (6) and the following rearrangements:
F(x)=Cx +CEmax{0,0—x"} = Cx + CE[0—x"10>x"|P|0> x| =
=Cx +C (E[0—x|-E[0—x10<x)) = Co+C(E[x —010<x]).



The second representation in (7) follows from (6) and

Emax{0,0—x" }=EQ(6>x)—x PO=x").

Remark 3: The critical quantile in (6) defines the VaR risk measure, i.e., it
indicates the magnitude of emission reduction in stage 1 that, with probability 1- C;/C,,
will be sufficient to meet the safety constraint with no additional reduction required in
stage 2. The second equation in (7) defines the CVaR risk measure; i.e., the expected
value of abatement costs that will be necessary in stage 2 if emissions reductions in
stage 1 are not sufficient to meet the safety constraint. For some distributions it is

possible to derive x* from (6) explicitly. If 6 is uniformly distributed on [a,b], then it

. * Cl Cl . * . . . . . . .
is easy to see that x =—a+|1—— p (i.e., x 1is between optimistic and pessimistic
2 2

scenarios of emissions with weights defined by ratio of costs C, and C,).

3.2. Comparative analysis

The Proposition of Section 3.1 allows the comparison of cases of perfect information,
full uncertainty, and uncertainty with learning. Equation (6) shows the critical
dependence of period 1 optimal decision on the probability distribution H . Assume that
C, < C,. In the case of perfect information, i.e., when € is known at the beginning of

the first period, both x, and x, can be chosen as a function of observable 6. Clearly,

the optimal solution is x, =&, x; = 0. Thus, the first term Clé of the first equation in

(7) represents the expected cost under perfect information. The second term represents
the expected value of perfect information because this cost would be eliminated if 6
were known before the first-period emission-reduction decision had to be made (rather
than afterward as in the learning case). In the case of full uncertainty (“without

learning”), the optimal decision x; =€, x, =0 1is also known as the certainty

equivalent. The possibility of learning combined with explicit introduction of ex post
decisions specifies optimal period 1 abatements by the quantile satisfying (6). It may

exceed the certainty equivalent 6 or it may be below this level. As equation (6) shows,
this depends on the relative values of costs C,, C,, and the probability distribution H .

For example, if C,/C, =1/2 and 60 has a normal distribution, then optimal ex ante
abatement coincides with the certainty equivalent xf = 6. For non-normal probability
distributions, the optimal abatements can be below or above 0.

Remark 4: The certainty equivalent solution in the case of full uncertainty (no learning)
does not satisfy (4) for all #, which may lead to a catastrophic collapse of high
probability. The only way to fulfill the safety constraint (4) is to choose x, from the

' An asymmetric probability distribution can be caused, for example, by the interaction of a symmetric
probability distribution with an environmental constraint. For example, if the probability density function
for e(w) is normal, the distribution for f(w) can still be asymmetric if there is an atmospheric
concentration constraint that does not require emissions reductions for all w.



worst-case scenario as max f(w), w € 2. Clearly, this is an unrealistic and extremely
w

costly solution. This calls for the explicit introduction of safety constraint (2) to provide
a trade-off between cost effectiveness and risk. The optimal solution under full

uncertainty is now defined as minimal x;, x; =x,, satisfying equation

Plx, >0]=1—~ (since C; <C,, x, =0). Clearly, the risk-based solution under full
uncertainty x; =x, may be greater or less than 0, depending on y, C,/C,, and

probability distribution H . Imperfect learning (Section 4.2) may shift the ranges (the
support) of the probability distribution requiring ex ante abatement that is more or less-

aggressive than x,,.

4. Uncertain Costs and Outcomes
4.1. Uncertain cost

This section illustrates that the use of expected costs (a common assumption of standard
integrated assessment models (Wright and Erickson, 2003)) can be misleading, which

calls for the use of quantiles rather than expectations. Assume that stage 2 cost C, in
(3) is observable (ex-post) random variable, C,(w), C,=EC,(w), C, >0, C,>0.

Function (5) is written as F(x) = C;x + EC, (w) max{0, (@) — x} . The optimal ex ante

abatements satisfy equation F '(x) =C,—EC,(@)I(62x)=0, ie., risk attitudes

induced among ex ante decisions are now characterized by more complicated risk
measures than the CVaR risk measure of Section 3.1. Let us simplify the analysis by
assuming as in Arrow and Fisher, (1974) that 6 =d, where d is a known
(deterministic) positive number. Then, without learning of cost C,(w), the problem is to

minimize the expected cost Cx, +C,x,, where x, +x,=d, x 20, x,20. If
C; < C,, then the solution xl* =d, x; =0 is optimal. The ability to learn before the

period 2 decision is made implies that a decision maker may reject emissions reduction
in period 1, with a likelihood given by the probability that C,(w) < C,. This poses the

important question about the applicability of expected costs, which is also the key issue
for evaluating the potential catastrophic impacts characterized by skewed and
multimodal distributions (see, e.g., Figures 5, 7 in Ermoliev et al, 2000). This requires
the use of quantiles, say, the median rather then expected values.

Consider random two-period costs Cix; +C,(@)(d —x;). The median of
Cix+Cy(w)d—xy) is  Cix;+medC,(w)(d—x;). Assume that C;=3.75,
C,(w) = —3 with probability 1/3, C,(w) =15 with probability 1/3, and with probability
1/3 it is uniformly distributed in the interval [2,4]. Thus, EC,(w) =5, medC,(w) = 3.
Therefore, the optimal solution using expectations without learning is xl* =d, x; =0.
Let us notice that the expected value EC,(w) =15 does not occur in reality, i.e., unlike

the median it does not belong to the support of the distribution of C,(w) . The use of

the median leads to the optimal solution xl* =0, x; =d, i.e., it reverses the previous



conclusion regarding the optimal solution. Assume now that C; =11, C,(w)=-5
with probability 1/5, C,(w) =35 with probability 1/5 and with probability 3/5 it is
uniformly distributed in interval [14,16]. In this case, EC,(w)=9, i.e., the optimal

solution without learning is xl* =0, x; =d . Since medC,(w) > 14, then the use of the
median leads to the opposite optimal solution xik =d, x; =0.

Remark 5: An approach for minimizing quantiles follows from Section 3.1. It
shows that the minimization of a quantile of C,x; +C, (@)max{0, B —x} can be

reduced to minimization of a convex function
y + pE max{0,C,x + C,(w) max{0,3 —x} — y} with respect to (x,y). The solution of

this STO problem (x*, y*) satisfies constraints
P[Cix+ Cy(w)max{0, B —x} = y] = l
u

4.2. Uncertain durations of stages: Limited adaptive capacity

The general two-stage problem (Section 2) with constraint (2) has a random duration of
stages. There are at least two reasons this duration may be uncertain. First, in cases with
learning, the timing of new information may be uncertain. For example, if learning is
slow, the second period may occur late, while if learning is fast the second period will
begin early. In addition, inertia in socio-economic systems may affect the duration of
stages. For example, a given emissions reduction in period 1 may take a long time in
systems with substantial inertia, but less time in more flexible systems (Ha-Duong et al,
1997). The path-dependencies (inertia) of the socio-economic systems producing
greenhouse gasses are critical for dealing with abrupt changes. Without inertia, the
switching from one emission path to another would be instantaneous. In reality, energy
production systems cannot be changed overnight. As a result, preparedness programs
may be only partially implemented because of the potential lack of time in both stages.
The proper treatment of these effects requires the explicit introduction of random
durations of stages. The following show that a delay with proper ex ante abatements
may result in a violation of constraint (2).

In its simplest form, the uncertain duration of stages can be modeled by
constraints x, < with positive random (3 which becomes known from learning at

stage 2. In other words, it is assumed that the uncertain duration of stage one (with fixed
two period time horizon T ) affects the capacity for reductions in period 2 (for example,
a longer period 1 reduces the scope for reductions in period 2 given its shorter duration).

Without the safety constraint of type (2), the optimal stage 2 decision
X, = min[ﬁ, max {0,0 — xl}] cannot in general satisfy safety constraints (4) for all 6. As
a consequence, the probability of a catastrophe can be rather high, calling for explicit
introduction of type (2) safety constraint P[x1 +x,> 9] =1—7. Since x, <f3, this

requires ex-ante emission reduction commitments x, = X, where x, 1s minimal non-

negative x satisfying equation P[x >0-p ] =1— . Therefore, in order to prevent a



catastrophic collapse, there must exist regulations on minimal ex-anfe emission
reductions sufficient to keep open the possibility of satisfying the safety constraint in
stage 2, which can be evaluated by analyzing STO problems with safety constraints (2).

4.3. Incomplete learning and safety constraints

Consider a very realistic case where the learning affects only the prior distribution
H(z), in other words, it shifts the range of uncertainty. As the optimal period 1

decision of Section 3.1 is a quantile of H(z), learning may dramatically affect this
decision in different directions. Let us assume that H(z) = P[0 <z] is a mixture

H(z)=E:H($,2) = J.H(y,z)dG(y) of distribution H(&,z) with unknown ¢&
characterized by a probability distribution G(y)= P[{ <y], which may reflect
polarized views on scenarios of climate changes. The learning reveals only & at the
beginning of period 2. For example, H(z) can be a mixture of distributions H (&, z)
with probability mass concentrated in different subregions from the support of H(z). If
the support of H (¢, z) is a singleton, then the learning of & reveals the true value of 6.
For the sake of illustration, let H(z) be a mixture of two distributions H(z) and
H,(z), thatis, &H,(z)- (1- £)H,(z), where & =0 with probability p and & =1 with
probability 1- p, thatis, H(z) = pH,(z)+ (1— p)H,(z). Since only ¢ is observed, the
stage 2 decision x, (&) can not fulfill constraints (4), and the safety constraint has to be
written as in (2):
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where 6(¢) has the probability distribution H.(z). For a given & and y, let us define
z7(§) as minimal z, satisfying equation P[zZH({)]zl—v. Then equation (8) is
equivalent to the equation x, + x,(§) >z (§), which is similar to (4). The optimal
period 2 decision x, = max {0, z»,(ﬁ)—xl}, and optimal x;, has to minimize

F(x)=Cx+C, [