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Cerebrospinal fluid (CSF) plays an essential role in early postnatal brain development.

Extra-axial CSF (EA-CSF) volume, which is characterized by CSF in the subarachnoid

space surrounding the brain, is a promisingmarker in the early detection of young children

at risk for neurodevelopmental disorders. Previous studies have focused on global

EA-CSF volume across the entire dorsal extent of the brain, and not regionally-specific

EA-CSF measurements, because no tools were previously available for extracting local

EA-CSF measures suitable for localized cortical surface analysis. In this paper, we

propose a novel framework for the localized, cortical surface-based analysis of EA-CSF.

The proposed processing framework combines probabilistic brain tissue segmentation,

cortical surface reconstruction, and streamline-based local EA-CSF quantification. The

quantitative analysis of local EA-CSF was applied to a dataset of typically developing

infants with longitudinal MRI scans from 6 to 24 months of age. There was a high degree

of consistency in the spatial patterns of local EA-CSF across age using the proposed

methods. Statistical analysis of local EA-CSF revealed several novel findings: several

regions of the cerebral cortex showed reductions in EA-CSF from 6 to 24 months of

age, and specific regions showed higher local EA-CSF in males compared to females.

These age-, sex-, and anatomically-specific patterns of local EA-CSF would not have

been observed if only a global EA-CSF measure were utilized. The proposed methods

are integrated into a freely available, open-source, cross-platform, user-friendly software

tool, allowing neuroimaging labs to quantify local extra-axial CSF in their neuroimaging

studies to investigate its role in typical and atypical brain development.
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1. INTRODUCTION

1.1. General Information on CSF
Cerebrospinal fluid (CSF) is a clear, colorless fluid that circulates
in the brain, providing necessary mechanical and immunological
protection to the brain. In addition to its protective purpose,
recent findings have shown that CSF circulation plays a crucial
role in brain development and function prenatally and during the
lifespan (Jessen et al., 2015; Lun et al., 2015). Figure 1 illustrates
CSF circulation in the subarachnoid space around the brain,
spinal cord, and in the ventricles of the brain. Following CSF
production by the choroid plexus in the ventricles, it circulates
from the lateral, third, and fourth ventricles to the cisterns of
the brain. CSF flow continues to the subarachnoid space, where
it covers the cortical convexities of the brain. CSF then flows
back into the parenchyma, where it interacts with the interstitial
fluid within the perivascular spaces. Finally, CSF returns to the
subarachnoid space, where it is absorbed through meningeal
lymphatic vessels and arachnoid granulations.

It is now realized that healthy CSF circulation serves two
essential functions to the brain. The first is a regulatory
function by delivering growth factors and signaling molecules
critical to brain development (Lun et al., 2015). Second,
CSF circulation provides a filtration mechanism by removing
neuroinflammatory proteins and metabolic waste byproducts of
neuronal function, which would otherwise accumulate (Iliff et al.,
2012). Disrupted CSF circulation has been shown to be involved
in neurodegenerative conditions such as Alzheimer’s disease,
ischemic and traumatic brain injury, and neuroinflammatory
conditions such as multiple sclerosis (Simon and Iliff, 2016).
More recently, abnormalities in CSF were also linked to the onset
of neurodevelopmental disorders (NDDs), including autism
spectrum disorder (ASD) (Shen et al., 2013, 2017, 2018).

1.2. MRI-Based CSF Biomarkers
The volume of different CSF compartments can be accurately
measured from in vivo structural magnetic resonance imaging
(structural MRI or sMRI), which can serve as indirect markers
of abnormal CSF production and absorption. Current findings
in lateral ventricles (LV) volume related to ASD have indicated
no consistent, significant group differences in children (Vidal
et al., 2008) or adults (McAlonan et al., 2002). In contrast, there
is evidence in ASD for increased volume of CSF located outside
the ventricles (Hallahan et al., 2009), as well as increased volume
of global CSF across the entire brain (McAlonan et al., 2004).
Notably, two studies of infants at high familial risk for ASD have
reported increased global volume of CSF in the subarachnoid
space (Extra-Axial CSF or EA-CSF) (Shen et al., 2013, 2017).
Increased EA-CSF volume at 6 months (see example in Figure 2)
of age, prior to the defining behavior symptoms of ASD, was
observed in infants who were later diagnosed with ASD (Shen
et al., 2013). Further, EA-CSF remained abnormally elevated at
12 and 24 months of age (Shen et al., 2013). Moreover, greater
EA-CSF volume at 6months was also associated withmore severe
autism symptoms at the time of diagnosis at 2 years of age (Shen
et al., 2013). Such EA-CSF findings were later confirmed through
replication in a larger, independent cohort of infants (Shen

et al., 2017). The previous EA-CSF studies relied on a novel
method in infant MRIs to quantify the volume of EA-CSF in
the dorsal subarachnoid space above the horizontal plane of the
anterior-posterior commissure, thereby avoiding ventral regions
that contain cisterns, sinuses, and vasculature that should not be
classified as EA-CSF.

1.3. EA-CSF Quantification
The earlier results indicate that the quantification of global EA-
CSF could be important in understanding the nature of brain
and CSF pathology and its relation to ASD symptoms. However,
the global EA-CSF measure does not provide an anatomical
localization of the effect. A localized EA-CSF extraction would
provide measurements suitable for localized group analysis or
localized discriminative analysis. Moreover, the ability to obtain
anatomically precise measures would provide greater insight
into the underlying physiological and anatomical mechanisms,
as well as a more fine-grained ability to detect abnormalities in
NDDs. One older method to extract local measurements of EA-
CSF is through voxel-based morphometry (VBM), which utilizes
a statistical approach of parametric mapping (Ashburner and
Friston, 2000). VBM methods are computationally efficient as
they do not involve surface reconstruction of complex cortical
surfaces, but the accuracy and precision of localized EA-CSF
measurements from VBM are severely limited by the voxel
resolution and are sensitive to volumetric registration errors,
which are known to be abundantly present in most cortical areas
due to the inherent cortical folding variability. Moreover, such
voxel-based EA-CSF measurements cannot be easily correlated
with other cortical surface-based measurements (e.g., cortical
thickness and surface area) that have been shown to hold value
as early biomarkers for NDDs such as ASD (Hazlett et al., 2017).
Hence, the ability to extract high-dimensional surface-based local
EA-CSFmeasurements would allow for a better understanding of
how such biomarkers are related to each other, leading to optimal
combinations for accurate early prediction of NDDs using deep
learning techniques of multiple measures.

1.4. Proposed Method of Local EA-CSF
To overcome the limitations mentioned above, as shown in
Figure 3, this paper presents a novel framework for extracting
surface-based local EA-CSF measurements from sMRI. The
proposed framework first computes a probabilistic tissue
segmentation of white matter (WM), gray matter (GM), and
CSF. A hard segmentation is obtained from the tissue probability
maps. These hard segmentations are then used to reconstruct
polyhedral models of the outer CSF hull surface as well as the
WM and GM surfaces. A Laplacian partial differential equation
(PDE) is solved between a defined inner surface and the CSF hull
surfaces to generate a vector field that is used to create streamlines
connecting the surfaces. Along these streamlines, the CSF space
is sampled, and CSF probability values are integrated to generate
local EA-CSF measures at each point cortical surface. To the best
of our knowledge, the proposed framework is the first to address
the problem of extracting local EA-CSF measurements in a way
that is suitable for localized surface-based analysis.

Frontiers in Neuroscience | www.frontiersin.org 2 October 2020 | Volume 14 | Article 561556

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mostapha et al. Anatomical Mapping of Extra-Axial Cerebrospinal Fluid

FIGURE 1 | Illustration of cerebrospinal fluid circulation in the ventricles, subarachnoid space surrounding the brain, interstitial space within the brain parenchyma, and

draining into the meningeal lyphatic system and arachnoid granulations. Figure adapted with permission from Shen (2018).

FIGURE 2 | (A) T1-weighted MRI of a typically-developing infant with a normal MRI at 6 months of age. (B) T1-weighted MRI of an infant with enlarged EA-CSF

volume at 6 months of age, who was diagnosed with ASD at 2 years of age. The dark regions between the brain folds and skull indicate increased volume of EA-CSF.

2. METHODS

2.1. Participants and MRI Acquisition
We analyzed 153 structural MR brain images, which were
obtained at 3 time points (6, 12, 24 months of age) from 51
typically-developing infants, who were at low risk for ASD

(i.e., no family history of ASD, intellectual disability, or major
psychiatric disorder, and who had an older sibling with typical

development). These infants were scanned longitudinally at 6, 12,
and 24 months of age as part of a National Institutes of Health-

funded, multi-site, Autism Centers of Excellence (ACE) Network

study: the Infant Brain Imaging Study (IBIS). Data collection

sites had study protocols approval from their Institutional Review

Boards (IRB), and all enrolled subjects had informed consent
provided by parent/guardian. The MRI scans were acquired at

4 different sites (University of North Carolina at Chapel Hill,
University of Washington in Seattle, Washington University in
St. Louis, and Children’s Hospital of Philadelphia), each equipped
with 3T Siemens Tim Trio scanners (Wolff et al., 2012). The
scan sessions included T1-weighted (T1w) (160 sagittal slices
with TR = 2,400 ms, TE = 3.16 ms, flip angle = 8◦, field of
view 224 × 256) and T2-weighted (T2w) (160 sagittal slices
with TR = 3,200 ms, TE = 499 ms, flip angle = 120◦, field of
view 256 × 256) MRI scans. All datasets had the same spatial
resolution of 1 × 1 × 1 mm3. Only participants with scans
from all three time points were included to enable an accurate
longitudinal study of extracted local EA-CSF trajectories. The
total sample of N = 51 infants (153 scans) included N = 32 males
(96 scans) and 19 females (57 scans); see Table 1 for complete
demographic information.
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FIGURE 3 | The proposed framework for the extraction of local EA-CSF from structural MRI. The proposed processing pipeline combines probabilistic brain tissue

segmentation, cortical surface reconstruction, as well as streamline-based quantification to produce accurate and reliable local EA-CSF measurements.

TABLE 1 | Breakdown of ages, sex, and number of scans in the current dataset

of typically developing infants from the IBIS sample.

Number of sMRI Scans All Male Female

153 96 57

6 Months (Mean age ± STD) 51 (6.81 ± 0.80) 32 (6.77 ± 0.81) 19 (6.89 ± 0.80)

12 Months (Mean age ± STD) 51 (12.72 ± 0.72) 32 (12.65 ± 0.66) 19 (12.84 ± 0.81)

24 Months (Mean age ± STD) 51 (24.57 ± 0.55) 32 (24.60 ± 0.58) 19 (24.51 ± 0.50)

Multiple procedures for quality control were employed to
assess scanner stability and reliability across sites, times, and
scanner upgrades. A Lego (Lego Group, Billund, Denmark)
brick-based phantom (Fonov et al., 2011) was scanned monthly
at each study site and analyzed to assess image quality and
quantitatively address site-specific local distortions. Also, two
adult living phantomswere scanned once per year at each scanner
and after any significant scanner update. The data for these
phantoms were evaluated for scanner stability across sites and
time (Gouttard et al., 2008) and are also to assess stability for the
local EA-CSF measure.

2.2. Image Processing and Surface
Generation
2.2.1. Initial Preprocessing
The raw T1w and T2w brain images were corrected for intensity
non-uniformity using the N4 algorithm (Tustison et al., 2010)

(Figures 4A,B). Correction of geometric distortions was also
applied for the optimal processing of multi-site longitudinal
data (Fonov et al., 2010). T1w and T2w images were rigidly
transformed to a prior pediatric 1-year-old atlas in stereotaxic
space. A prior intensity growth map was applied to the 12-month
T1w and T2w scans to improve the poor contrast of theWM/GM
boundary from under-myelination (Kim et al., 2013).

2.2.2. Skull Stripping
The brain mask necessary to perform skull stripping was
performed using a multi-atlas approach that combines multiple
candidate brain masks obtained via deformable registration
of a prior set of atlases (each consisting of a T1w, T2w
and brain mask label image). Five brain masks were utilized,
namely FSL-BET (Smith, 2002), two in-house prior atlases, and
two atlases of the CIVET pipeline (Kim et al., 2005). The
deformable registration was computed via the ANTs registration
toolkit (Avants et al., 2011) using both T1w and T2w data.
The candidate brain masks were then combined, weighting each
equally, to result in a majority vote fusion.

2.2.3. Tissue Segmentation
Different brain tissues were then segmented using a framework of
atlas-moderated expectation-maximization (EM) implemented
in the AutoSeg toolkit (Wang et al., 2014). Particularly, a
deformable registration was applied to propagate a prior template
and prior tissue probability maps for WM, GM, and CSF from
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FIGURE 4 | An example of the probabilistic tissue segmentation obtained for an input infant sMRI scan. (A) T1-weighted scan, (B) T2-weighted scan, (C) WM, GM,

and CSF label map, (D) CSF probability map, (E) CSF probability map with ventricular CSF space removed.

MNI space into individual T1w data (Fonov et al., 2011). Then,
an EM based tissue segmentation was performed (Van Leemput
et al., 1999) to obtain a label map with segmentations for
WM, GM, and CSF (Figure 4C). Ventricular CSF space (lateral
ventricles, third and fourth ventricles) was then removed from
the CSF posterior map (Figure 4D) by deformably co-registering
a single prior template with an existing ventricular area mask and
using the registered mask to remove the ventricle (Figure 4E).

2.2.4. Surface Reconstruction
Cortical surfaces were reconstructed with an adapted version
of the CIVET workflow (Kim et al., 2005). The cortical surface
model consisted of high-resolution triangle meshes (81,920
triangles and 40,962 vertices) in each hemisphere, and cortical
surface correspondence among subjects was established via
spherical registration to an average surface template (Robbins
et al., 2003). CIVET was applied to 12 and 24 months old data
following tissue segmentation with AutoSeg to construct WM
and GM surfaces (Figures 5A,B). However, tissue segmentation
for 6-month-old subjects did not yield reliable WM vs. GM
segmentation because the WM and GM have almost the same
intensity level in both T1w and T2w scans of isointense-phase
infants (around 6–8 months of age). Cortical surfaces at 6
months were determined longitudinally via the corresponding 12
months visit to solve this problem. Using ANTs (Avants et al.,
2011) deformable registration with normalized cross-correlation
(metric radius 2 mm, Gaussian smoothing of 3 mm of the
deformation map) of joint T1w and T2w data (both image
sources were equally weighted), the pre-processed, brain masked
MRI data of 12-month-old subjects was registered to data from
the same subject at age 6 months. This registration was applied
to the cortical surfaces of the 12-month-old subjects to propagate
them into the 6 months space (see Figure 6). In addition to the
WM and GM surfaces, a smoothed middle surface (Figure 5C)
was obtained by averaging WM and GM surfaces and then two
iterations of averaging based surface smoothing. Moreover, the
outer CSF hull surface (Figure 5D) was generated by first dilating
the intracranial mask, followed by a surface reconstruction using
standard marching cubes algorithm (Lorensen and Cline, 1987)
and a subsequent Laplacian surface smoothing. Finally, all the

reconstructed surfaces were visually QC’ed with a surface cut
overlay on the MR images by a single rater (MM).

2.3. Extraction of Local Extra-Axial
Cerebrospinal Fluid
2.3.1. Solving Laplace PDE
Following the reconstruction of the cortical surfaces, the next step
is to solve a Laplace’s equation between the inner surface (Sinner)
and a corresponding outer surface (Souter). While the CSF hull
surface (Figure 5D) is defined as Souter , in this work, we utilize
themiddle surface (Figure 5C) as Sinner instead of the GM surface
to accommodate for potential surface reconstruction errors. Both
Sinner and Souter are assumed to have spherical topology, i.e.,
can be stretched and warped without breaking to form a sphere
surface. Laplace’s equation is a second-order PDE solved for a
scalar field u(x) that is enclosed between boundaries Sinner and
Souter . The Laplace PDE takes the following form

△u = ∇
2u(x) = 0, (1)

where u(x) = uL for x ∈ Sinner and u(x) = uH for x ∈ Souter . To
correctly measure local EA-CSF, a boundary condition map that
defines the Laplace PDE boundary condition must be defined in
an anatomically consistent manner. In the solution of the Laplace
PDE in the proposed framework, the solution domain is bounded
by the Dirichlet condition and the Neumann condition. The
Dirichlet condition specifies values of the solution itself on the
boundary, while theNeumann boundary condition defines values
for the first-order derivative of the solution. The interface with
the Dirichlet condition defines Sinner and Souter where streamlines
start and arrive, and the Neumann condition defines an open
boundary that is parallel to the streamlines (see Figure 7). A
consistent boundary map generation is ensured using surface-
based pre-processing steps that were applied to create a boundary
label map in the image domain (Lee et al., 2016). The Laplace
PDE is iteratively solved in the created image voxel grid using the
Jacobi method (Causon and Mingham, 2010).
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FIGURE 5 | An example of the cortical surfaces reconstructed from the input infant structural MRI. (A) WM Surface, (B) GM Surface, (C) Middle Surface, and (D) CSF

Hull Surface.

FIGURE 6 | The process of generating cortical surfaces for the 6-month-old structural MRI scans.

2.3.2. Streamline-Based Local EA-CSF
After obtaining the Laplace PDE solution, the next step is the
computation of the local EA-CSF between Sinner and Souter ,
which we define as CSF accumulated along the lines connecting
the two surfaces. Such lines need to be orthogonal to the
PDE solution isolines at each point to obtain a biologically
plausible path. To achieve that, streamlines that are tangent to
the normalized gradient field of the PDE solution are utilized
to provide an analogy to cortical columns and to establish
a one-to-one correspondence between Sinner and Souter . Such
streamlines are then constructed explicitly by the integration
of the Lagrangian vector field. A fourth-order Runge-Kutta
(RK4) integration method (Yaakub and Evans, 1999) is used in
generating the streamlines tominimize local truncation error and
provide faster convergence.

To achieve sub-voxel accuracy, we process the starting and
ending segments of the streamlines to fit them perfectly within
the boundary of the defined inner and outer surfaces. Finally,
a local EA-CSF measure is computed for each vertex v by
accumulating CSF probability P at each point k on the streamline
lv associated with v. A linear approximation is utilized to account
for the streamlines non-uniformity

EA− CSFv =
∑

k∈lv

(

P(k)+ P(k+ 1)

2

)

× 1k, (2)

where 1k representing the Euclidean distance between point k
and the successive point k+ 1. Figure 8 provides an example for
the computed streamlines and sampled CSF probability map.
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FIGURE 7 | A solution of the (A) Laplace equation with two different boundary conditions. As observed in the color map (B) and the contour image (C), the solution

isolines are parallel to the Dirichlet boundary and perpendicular to the Neumann boundary. Figure from Lee et al. (2016).

As CSF values are accumulated along the streamlines, and
locations/voxels with no CSF contents do not contribute to the
accumulate EA-CSF measure, our proposed streamline approach
is rather robust to the exact location of the inner surface as long
as all CSF regions of interest lay between the inner and outer
surfaces. For that purpose we chose the middle cortical surface
as the inner surface (see section 2.2). Choosing the gray matter
surface as inner surface would likely exclude minor EA-CSF
sections due to segmentations errors of the graymatter boundary.

2.3.3. Statistical Analysis
The extracted raw local EA-CSF maps were first mapped to the
common MNI surface template space (Lyttelton et al., 2007)
for additional processing and analysis. As an initial standard
processing step in the study of cortical surface measurements,
a geodesic heat kernel-based smoothing (FWHM of 20 mm)
was applied to the EA-CSF maps (Chung et al., 2005). The
effects of sex and age on local EA-CSF were tested using a
longitudinal mixed-effects model in SurfStat, which is a toolbox
for statistical analysis of cortical surface measurements applying
random field theory for statistical inference (Chung et al.,

2010). The longitudinal linear mixed model included a subject-
specific random intercept to induce equal correlations between
observations on the same subject. Slope terms were also added
to model the fixed effects of sex, of age, as well as of sex and
age interactions. In particular, with the local EA-CSF as the
dependent variableY , the following linearmixedmodel was fitted
for each subject i:

Yi = β0 + β1Sexi + β2Agei + β3SexiAgei + Ui + εi, (3)

where Ui captures estimates for the subject-specific random
effect and εi is the independent noise term in every observation.
Standard false discovery rate (FDR) (Benjamini and Hochberg,
1995) correction was applied to correct for the multiple
comparisons in the model in Equation ( 3). Figure 9 illustrates
the within-subject correlation of local EA-CSF across age, as
revealed by the linear mixed model. High correlations are shown
across most of the brain regions, particularly in the frontal,
parietal, and temporal lobes. In the presence of highly correlated

Frontiers in Neuroscience | www.frontiersin.org 7 October 2020 | Volume 14 | Article 561556

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mostapha et al. Anatomical Mapping of Extra-Axial Cerebrospinal Fluid

FIGURE 8 | (A) Streamlines generated using a fourth-order Runge-Kutta (RK4) integration method. (B) Local EA-CSF measure is computed by accumulating CSF

along the generated streamlines.

FIGURE 9 | The correlation of local EA-CSF within-subject across ages 6–24 months. High correlations in the frontal, parietal, and temporal lobes were observed.
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FIGURE 10 | Coefficients of variation (σv/µv × 100) for local EA-CSF maps of two sets of adult brains. Mean coefficient of variation of 1.15 and 1.56% were observed

for (A) Case I and (B) Case II, respectively. Regions with high coefficient of variation are linked to CSF segmentation issues.

areas, subject-specific random effects need to be incorporated in
the linear mixed model.

3. EXPERIMENTAL RESULTS

3.1. Local EA-CSF Reproducibility
The stability and reliability of the proposed local EA-CSF
measure were tested using a dataset with a large set of scan/rescan
MRIs. Two human phantoms (young male subjects, age 26, and
27), were scanned with the same pulse sequence at four different
sites using Siemens 3T Tim Trio scanners, at irregular intervals
over 2.5 years. This resulted in 35 MRI scans for subject I and
31 MRI scans for subject II. The tissue segmentation, brain
surface reconstruction, and computation of local EA-CSF maps
were performed independently. Local EA-CSF maps were then
analyzed using the local coefficient of variation (CV) as ameasure
of stability. The CV for a vertex v is defined as the ratio between
the standard deviation and mean of the extracted local EA-CSF
across diffident scans of the same subject:

CVv =
σv

µv
× 100. (4)

It is noteworthy that the EA-CSF spaces in these two adult
subjects were visually smaller than those we observed in our
infant dataset. In general, in our experience infants have visually
larger EA-CSF spaces than adults. It is thus likely our results
yield a conservative estimate of the expected reproducibility in
the infant settings.

The CV analysis showed excellent stability with mean across-
site CV of 1.15 and 1.56% for all cortical regions in Case I and
Case II respectively (Figure 10). Higher CVs were observed in
few regions, including left supramarginal gyrus, left postcentral
gyrus, left gyrus rectus, right postcentral gyrus, right superior
temporal gyrus, and right precentral gyrus. Local EA-CSF

variability in these regions was mainly linked to imperfect CSF
tissue segmentation. It is worthwhile to mention that the global
ICV measures showed CV values around 1% (Bryson et al., 2008;
Hazlett et al., 2012) in the same human datasets. Hence, the
proposed local EA-CSF extraction framework provided a stable
local measure as compared to global ICV in adult brains.

3.2. Anatomical Mapping of Local EA-CSF
Across Age
Figure 11 shows the mean and standard deviation of local EA-
CSF maps at 6, 12, and 24 months. At all ages, local EA-CSF
is most abundant over the central and precentral sulci. This
observation is consistent with visual inspection of hundreds of
infant MRI brain images (Shen et al., 2013, 2017). We also
observed finer grained findings that are consistent at all the
studied ages, such as increased EA-CSF along the superior
frontal gyrus, fusiform gyrus, and the calcarine sulcus, as
well as decreased EA-CSF in the inferior parietal lobule and
the middle temporal gyrus. These observations are novel. As
a group, this sample of typically developing infants showed
anatomical consistency of the average, local EA-CSF patterns
across time (left column in Figure 11). Yet, differences across
individuals at each age are quite large as evident from the mean
coefficients of variation of 44.6, 42.2, and 42.9% at 6, 12, and 24
months, respectively.

Consistent with our previous global EA-CSF report (Shen
et al., 2017), we observed a significant decrease in local EA-
CSF over time. Figures 12A,D shows the linear change rates of
local EA-CSF per month between 6 and 24 months of age. The
mean negative change rate of all regions that showed statistically
significant differences across age was –0.011 per month. Multiple
regions of the frontal lobe showed significant negative change
rates of EA-CSF, while the region with the greatest negative
change rate (–0.046 per month) was observed in the left superior
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FIGURE 11 | The mean and standard deviation of local EA-CSF measured at 6 months (first row), 12 months (second row), and 24 months (third row). At all ages,

local EA-CSF is most abundant over the central sulcus, precentral sulcus and longitudinal fissure. The highest inter-subject variability of local EA-CSF was found in the

medial and ventral temporal areas.
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FIGURE 12 | The longitudinal age effect on local EA-CSF. (A) Frontal regions showed a mean negative change rate of local EA-CSF of –0.011. The greatest negative

change rate of –0.046 per month was observed in the left superior temporal gyrus. The corresponding (B) raw T-scores (red: negative age effect; blue: positive age

effect) and (C) FDR corrected T-scores in regions with statistically significant age effect (FDR Q < 0.01, only regions with a negative age effect survived FDR

correction); (D) EA-CSF plot across age at the surface location with maximum T score, (Tmax = 8.57, located in left frontal superior gyrus).

temporal gyrus. Figures 12B,C shows the FDR-corrected T
scores (FDR threshold Q < 0.01) for the age effect resulting
from the longitudinal mixed-effects model. Overall 16.9% of the
brain showed a significant decrease in local EA-CSF in the first
2 years of infant’s life. Local EA-CSF showed a highly negative
correlation with age in most of the frontal lobe areas, including
bilateral middle frontal gyrus and bilateral superior frontal gyrus.
Negative correlation with age was also observed in some temporal
regions, such as the bilateral superior temporal gyrus. No cortical
areas showed a significantly positive association of age and the
local EA-CSF.

3.3. Sex Differences in the Anatomical
Mapping of Local EA-CSF
Several brain regions showed a statistically significant main effect
of sex across age (FDR threshold Q < 0.01), with higher local

EA-CSF in males compared to females in regions such as: right
middle frontal gyrus, inferior and medial orbital gyri, bilateral
inferior frontal gyri, right insula, and right superior temporal
gyrus, right supplementary motor cortex, and right superior
frontal gyrus. 6.2% of the brain showed more local EA-CSF in
males compared to females. There were no regions where females
showed larger EA-CSF (See Figures 13A,B). It is noteworthy that
our longitudinal mixed model did not covary for head size, for
example, via intracranial cavity volume.

In addition to the main sex effect, brain regions showed
a significant sex by age interaction, whereby local EA-CSF
decreased at a faster rate in males compared to females,
including: bilateral calcarine fissure, bilateral parahippocampal
gyri, bilateral middle temporal gyri, right superior parietal
gyrus, right precuneus. Figures 13C,D shows the results of the
longitudinal analysis of sex and age interaction.
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FIGURE 13 | Regions with sex differences in local EA-CSF. (A) FDR corrected T-scores in regions with statistically significant sex effect (FDR Q < 0.01, red: male >

female; blue: male < female). (B) Sex differences at location with maximum T score, (Tmax = 6.03, located in the right superior frontal gyrus). (C) Regions with

statistically significant sex by age interaction (FDR Q < 0.01). (D) Local EA-CSF profile at location with maximum sex by age effect (located in the left superior frontal

gyrus).

4. SUMMARY AND CONCLUDING
DISCUSSION

In this paper we propose a novel framework for extracting
surface-based local EA-CSF measurements from MR brain
images. The proposed framework is the first to address the
problem of obtaining local EA-CSF measurements in a way that
is suitable for localized surface-based analysis. The proposed
processing relies on a probabilistic tissue segmentation approach
to generate a CSF probability map that is used to reconstruct the
outer CSF hull surface. A Laplacian partial differential equation
is solved between the inner cortical surface and the CSF hull
surfaces to generate a vector field that is used to create streamlines
connecting the surfaces at sub-voxel accuracy via a fourth-order

Runge-Kutta approach. The starting and ending segments of
the streamlines are then processed to fit them correctly within
the boundary of the defined inner and outer surfaces. Along
these streamlines, the CSF probability values are accumulated to
quantify EA-CSF measures at each vertex on the cortical surface
mesh. The proposed local EA-CSF extraction tool was used to
study early postnatal brain development in typically developing
infants from the IBIS dataset. Due to a high within-subject
correlation, a longitudinal linear mixed model is proposed to
incorporate fixed effects of age and sex as well as sex and
age interactions.

The experimental results obtained from the scan/rescan
human dataset show that the proposed local EA-CSF measure
is reliable in a scan/rescan setting and produces reasonably
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stable results. The stability of the proposed method is further
confirmed by the consistency in local EA-CSF patterns across
the 3-time points used in studying local EA-CSF trajectories
in the first 2 years of infancy. The experimental results reveals
several findings through the proposed processing and analysis
pipeline. First, local EA-CSF in several cortical regions, mainly
in the frontal lobe areas, shows a statistically significant negative
correlation with age. The longitudinal analysis also reveals several
cortical regions with statistically significant higher local EA-
CSF in males compared to females. Most of these regions also
show a more substantial decrease in local EA-CSF across age.
However, few cortical areas show higher negative local EA-CSF
change rate in male subjects compared to females. Such localized
findings confirm that the proposed local EA-CSF extraction
pipeline reveals specific regions of significant change that would
not be possible to be observed using the previous global EA-
CSF approach.

The quantification of local EA-CSF measurements relies on
streamlines that are generated based on solving an isotropic
Laplace PDE between inner and outer surfaces on a created voxel
grid. However, such isotropic PDE solution is purely based on
the boundaries implied by the inner and outer surfaces. Hence,
a limitation of the proposed framework is that the generated
streamlines are not constrained to areas containing CSF. The
method also fails to account for partial volume effects that lie
between the two boundaries. In the future, we plan to improve the
proposed local EA-CSF quantification by replacing the isotropic
Laplace PDE with an anisotropic version (Joshi et al., 2018) in
which the diffusion coefficient varies spatially in proportion to
the fraction of CSF in each voxel. This allows for generating
streamlines that follow a realistic path through areas containing
CSF, leading to improvements in the accuracy and reliability of
extracted local EA-CSF measurements.
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