45 research outputs found

    A spin-wave frequency doubler by domain wall oscillation

    Full text link
    We present a new mechanism for spin-wave excitation using a pinned domain wall which is forced to oscillate at its eigenfrequency and radiates spin waves. The domain wall acts as a frequency doubler, as the excited spin waves have twice the frequency of the domain wall oscillation. The investigations have been carried out using micromagnetic simulations and enable the determination of the main characteristics of the excited spin-waves such as frequency, wavelength, and velocity. This behavior is understood by the oscillation in the perpendicular magnetization which shows two anti-nodes oscillating out of phase with respect to each other.Comment: 8 pages, 3 figure

    Magnetic domain-wall motion by propagating spin waves

    Full text link
    We found by micromagnetic simulations that the motion of a transverse wall (TW) type domain wall in magnetic thin-film nanostripes can be manipulated via interaction with spin waves (SWs) propagating through the TW. The velocity of the TW motion can be controlled by changes of the frequency and amplitude of the propagating SWs. Moreover, the TW motion is efficiently driven by specific SW frequencies that coincide with the resonant frequencies of the local modes existing inside the TW structure. The use of propagating SWs, whose frequencies are tuned to those of the intrinsic TW modes, is an alternative approach for controlling TW motion in nanostripes

    Oqtans: a Galaxy-integrated workflow for quantitative transcriptome analysis from NGS Data : From Seventh International Society for Computational Biology (ISCB) Student Council Symposium 2011 Vienna, Austria. 15 July 2011

    Get PDF
    First published by BioMed Central: Schultheiss, Sebastian J.; Jean, GΓ©raldine; Behr, Jonas; Bohnert, Regina; Drewe, Philipp; GΓΆrnitz, Nico; Kahles, AndrΓ©; Mudrakarta, Pramod; Sreedharan, Vipin T.; Zeller, Georg; RΓ€tsch, Gunnar: Oqtans: a Galaxy-integrated workflow for quantitative transcriptome analysis from NGS Data - In: BMC Bioinformatics. - ISSN 1471-2105 (online). - 12 (2011), suppl. 11, art. A7. - doi:10.1186/1471-2105-12-S11-A7

    KIRMES: kernel-based identification of regulatory modules in euchromatic sequences

    Get PDF
    Motivation: Understanding transcriptional regulation is one of the main challenges in computational biology. An important problem is the identification of transcription factor (TF) binding sites in promoter regions of potential TF target genes. It is typically approached by position weight matrix-based motif identification algorithms using Gibbs sampling, or heuristics to extend seed oligos. Such algorithms succeed in identifying single, relatively well-conserved binding sites, but tend to fail when it comes to the identification of combinations of several degenerate binding sites, as those often found in cis-regulatory modules

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, totalΒ T3 and freeΒ T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by freeΒ T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases

    Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases

    Get PDF
    In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-Ξ²3 (TGFΞ²3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies
    corecore