We found by micromagnetic simulations that the motion of a transverse wall
(TW) type domain wall in magnetic thin-film nanostripes can be manipulated via
interaction with spin waves (SWs) propagating through the TW. The velocity of
the TW motion can be controlled by changes of the frequency and amplitude of
the propagating SWs. Moreover, the TW motion is efficiently driven by specific
SW frequencies that coincide with the resonant frequencies of the local modes
existing inside the TW structure. The use of propagating SWs, whose frequencies
are tuned to those of the intrinsic TW modes, is an alternative approach for
controlling TW motion in nanostripes