506 research outputs found

    The inner dark matter distribution of the Cosmic Horseshoe (J1148+1930) with gravitational lensing and dynamics

    Full text link
    We present a detailed analysis of the inner mass structure of the Cosmic Horseshoe (J1148+1930) strong gravitational lens system observed with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). In addition to the spectacular Einstein ring, this systems shows a radial arc. We obtained the redshift of the radial arc counter image zs,r=1.961±0.001z_\text{s,r} = 1.961 \pm 0.001 from Gemini observations. To disentangle the dark and luminous matter, we consider three different profiles for the dark matter distribution: a power-law profile, the NFW, and a generalized version of the NFW profile. For the luminous matter distribution, we base it on the observed light distribution that is fitted with three components: a point mass for the central light component resembling an active galactic nucleus, and the remaining two extended light components scaled by a constant M/L. To constrain the model further, we include published velocity dispersion measurements of the lens galaxy and perform a self-consistent lensing and axisymmetric Jeans dynamical modeling. Our model fits well to the observations including the radial arc, independent of the dark matter profile. Depending on the dark matter profile, we get a dark matter fraction between 60 % and 70 %. With our composite mass model we find that the radial arc helps to constrain the inner dark matter distribution of the Cosmic Hoseshoe independently of the dark matter profile.Comment: 19 pages, 14 figures, 8 tables, submitted to A&

    Silicon-on ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    Get PDF
    The technical feasibility of producing solar-cell-quality sheet silicon to meet the Department of Energy (DOE) 1986 overall price goal of $0.70/watt was investigated. With the silicon-on-ceramic (SOC) approach, a low-cost ceramic substrate is coated with large-grain polycrystalline silicon by unidirectional solidification of molten silicon. This effort was divided into several areas of investigation in order to most efficiently meet the goals of the program. These areas include: (1) dip-coating; (2) continuous coating designated SCIM-coating, and acronym for Silicon Coating by an Inverted Meniscus (SCIM); (3) material characterization; (4) cell fabrication and evaluation; and (5) theoretical analysis. Both coating approaches were successful in producing thin layers of large grain, solar-cell-quality silicon. The dip-coating approach was initially investigated and considerable effort was given to this technique. The SCIM technique was adopted because of its scale-up potential and its capability to produce more conventiently large areas of SOC

    Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Get PDF
    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program

    Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Get PDF
    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities

    HOLISMOKES -- X. Comparison between neural network and semi-automated traditional modeling of strong lenses

    Full text link
    Modeling of strongly gravitationally lensed galaxies is often required in order to use them as astrophysical or cosmological probes. With current and upcoming wide-field imaging surveys, the number of detected lenses is increasing significantly such that automated and fast modeling procedures for ground-based data are urgently needed. This is especially pertinent to short-lived lensed transients in order to plan follow-up observations. Therefore, we present in a companion paper (submitted) a neural network predicting the parameter values with corresponding uncertainties of a Singular Isothermal Ellipsoid (SIE) mass profile with external shear. In this work, we present a newly-developed pipeline glee_auto.py to model consistently any galaxy-scale lensing system. In contrast to previous automated modeling pipelines that require high-resolution images, glee_auto.py is optimized for ground-based images such as those from the Hyper-Suprime-Cam (HSC) or the upcoming Rubin Observatory Legacy Survey of Space and Time. We further present glee_tools.py, a flexible automation code for individual modeling that has no direct decisions and assumptions implemented. Both pipelines, in addition to our modeling network, minimize the user input time drastically and thus are important for future modeling efforts. We apply the network to 31 real galaxy-scale lenses of HSC and compare the results to the traditional models. In the direct comparison, we find a very good match for the Einstein radius especially for systems with θE≳2\theta_E \gtrsim 2". The lens mass center and ellipticity show reasonable agreement. The main discrepancies are on the external shear as expected from our tests on mock systems. In general, our study demonstrates that neural networks are a viable and ultra fast approach for measuring the lens-galaxy masses from ground-based data in the upcoming era with ∼105\sim10^5 lenses expected.Comment: 17+28 pages, 7+31 figures, 2+5 tables, submitted to A&

    Silicon on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    Get PDF
    The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed

    Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    Get PDF
    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized

    HOLISMOKES -- IV. Efficient mass modeling of strong lenses through deep learning

    Full text link
    Modelling the mass distributions of strong gravitational lenses is often necessary to use them as astrophysical and cosmological probes. With the high number of lens systems (>105>10^5) expected from upcoming surveys, it is timely to explore efficient modeling approaches beyond traditional MCMC techniques that are time consuming. We train a CNN on images of galaxy-scale lenses to predict the parameters of the SIE mass model (x,y,ex,eyx,y,e_x,e_y, and θE\theta_E). To train the network, we simulate images based on real observations from the HSC Survey for the lens galaxies and from the HUDF as lensed galaxies. We tested different network architectures, the effect of different data sets, and using different input distributions of θE\theta_E. We find that the CNN performs well and obtain with the network trained with a uniform distribution of θE\theta_E >0.5">0.5" the following median values with 1σ1\sigma scatter: Δx=(0.00−0.30+0.30)"\Delta x=(0.00^{+0.30}_{-0.30})", Δy=(0.00−0.29+0.30)"\Delta y=(0.00^{+0.30}_{-0.29})" , ΔθE=(0.07−0.12+0.29)"\Delta \theta_E=(0.07^{+0.29}_{-0.12})", Δex=−0.01−0.09+0.08\Delta e_x = -0.01^{+0.08}_{-0.09} and Δey=0.00−0.09+0.08\Delta e_y = 0.00^{+0.08}_{-0.09}. The bias in θE\theta_E is driven by systems with small θE\theta_E. Therefore, when we further predict the multiple lensed image positions and time delays based on the network output, we apply the network to the sample limited to θE>0.8"\theta_E>0.8". In this case, the offset between the predicted and input lensed image positions is (0.00−0.29+0.29)"(0.00_{-0.29}^{+0.29})" and (0.00−0.31+0.32)"(0.00_{-0.31}^{+0.32})" for xx and yy, respectively. For the fractional difference between the predicted and true time delay, we obtain 0.04−0.05+0.270.04_{-0.05}^{+0.27}. Our CNN is able to predict the SIE parameters in fractions of a second on a single CPU and with the output we can predict the image positions and time delays in an automated way, such that we are able to process efficiently the huge amount of expected lens detections in the near future.Comment: 17 pages, 14 Figure

    Ready Student One: Exploring the predictors of student learning in virtual reality

    Full text link
    Immersive virtual reality (VR) has enormous potential for education, but classroom resources are limited. Thus, it is important to identify whether and when VR provides sufficient advantages over other modes of learning to justify its deployment. In a between-subjects experiment, we compared three methods of teaching Moon phases (a hands-on activity, VR, and a desktop simulation) and measured student improvement on existing learning and attitudinal measures. While a substantial majority of students preferred the VR experience, we found no significant differences in learning between conditions. However, we found differences between conditions based on gender, which was highly correlated with experience with video games. These differences may indicate certain groups have an advantage in the VR setting.Comment: 28 pages, 7 figures, 4 tables. Published in PLOS ONE March 25, 202
    • …
    corecore