118 research outputs found

    On the analysis of sedimentation velocity in the study of protein complexes

    Get PDF
    Sedimentation velocity analytical ultracentrifugation has experienced a significant transformation, precipitated by the possibility of efficiently fitting Lamm equation solutions to the experimental data. The precision of this approach depends on the ability to account for the imperfections of the experiment, both regarding the sample and the instrument. In the present work, we explore in more detail the relationship between the sedimentation process, its detection, and the model used in the mathematical data analysis. We focus on configurations that produce steep and fast-moving sedimentation boundaries, such as frequently encountered when studying large multi-protein complexes. First, as a computational tool facilitating the analysis of heterogeneous samples, we introduce the strategy of partial boundary modeling. It can simplify the modeling by restricting the direct boundary analysis to species with sedimentation coefficients in a predefined range. Next, we examine factors related to the experimental detection, including the magnitude of optical aberrations generated by out-of-focus solution columns at high protein concentrations, the relationship between the experimentally recorded signature of the meniscus and the meniscus parameter in the data analysis, and the consequences of the limited radial and temporal resolution of the absorbance optical scanning system. Surprisingly, we find that large errors can be caused by the finite scanning speed of the commercial absorbance optics, exceeding the statistical errors in the measured sedimentation coefficients by more than an order of magnitude. We describe how these effects can be computationally accounted for in SEDFIT and SEDPHAT

    Analysis of Boltzmann-Langevin Dynamics in Nuclear Matter

    Get PDF
    The Boltzmann-Langevin dynamics of harmonic modes in nuclear matter is analyzed within linear-response theory, both with an elementary treatment and by using the frequency-dependent response function. It is shown how the source terms agitating the modes can be obtained from the basic BL correlation kernel by a simple projection onto the associated dual basis states, which are proportional to the RPA amplitudes and can be expressed explicitly. The source terms for the correlated agitation of any two such modes can then be extracted directly, without consideration of the other modes. This facilitates the analysis of collective modes in unstable matter and makes it possible to asses the accuracy of an approximate projection technique employed previously.Comment: 13 latex pages, 4 PS figure

    Density Contrast Sedimentation Velocity for the Determination of Protein Partial-Specific Volumes

    Get PDF
    The partial-specific volume of proteins is an important thermodynamic parameter required for the interpretation of data in several biophysical disciplines. Building on recent advances in the use of density variation sedimentation velocity analytical ultracentrifugation for the determination of macromolecular partial-specific volumes, we have explored a direct global modeling approach describing the sedimentation boundaries in different solvents with a joint differential sedimentation coefficient distribution. This takes full advantage of the influence of different macromolecular buoyancy on both the spread and the velocity of the sedimentation boundary. It should lend itself well to the study of interacting macromolecules and/or heterogeneous samples in microgram quantities. Model applications to three protein samples studied in either H2O, or isotopically enriched H218O mixtures, indicate that partial-specific volumes can be determined with a statistical precision of better than 0.5%, provided signal/noise ratios of 50–100 can be achieved in the measurement of the macromolecular sedimentation velocity profiles. The approach is implemented in the global modeling software SEDPHAT

    On computational approaches for size-and-shape distributions from sedimentation velocity analytical ultracentrifugation

    Get PDF
    Sedimentation velocity analytical ultracentrifugation has become a very popular technique to study size distributions and interactions of macromolecules. Recently, a method termed two-dimensional spectrum analysis (2DSA) for the determination of size-and-shape distributions was described by Demeler and colleagues (Eur Biophys J 2009). It is based on novel ideas conceived for fitting the integral equations of the size-and-shape distribution to experimental data, illustrated with an example but provided without proof of the principle of the algorithm. In the present work, we examine the 2DSA algorithm by comparison with the mathematical reference frame and simple well-known numerical concepts for solving Fredholm integral equations, and test the key assumptions underlying the 2DSA method in an example application. While the 2DSA appears computationally excessively wasteful, key elements also appear to be in conflict with mathematical results. This raises doubts about the correctness of the results from 2DSA analysis

    The distortion of distributed voting

    Get PDF
    Voting can abstractly model any decision-making scenario and as such it has been extensively studied over the decades. Recently, the related literature has focused on quantifying the impact of utilizing only limited information in the voting process on the societal welfare for the outcome, by bounding the distortion of voting rules. Even though there has been significant progress towards this goal, almost all previous works have so far neglected the fact that in many scenarios (like presidential elections) voting is actually a distributed procedure. In this paper, we consider a setting in which the voters are partitioned into disjoint districts and vote locally therein to elect local winning alternatives using a voting rule; the final outcome is then chosen from the set of these alternatives. We prove tight bounds on the distortion of well-known voting rules for such distributed elections both from a worst-case perspective as well as from a best-case one. Our results indicate that the partition of voters into districts leads to considerably higher distortion, a phenomenon which we also experimentally showcase using real-world data

    The Open AUC Project

    Get PDF
    Progress in analytical ultracentrifugation (AUC) has been hindered by obstructions to hardware innovation and by software incompatibility. In this paper, we announce and outline the Open AUC Project. The goals of the Open AUC Project are to stimulate AUC innovation by improving instrumentation, detectors, acquisition and analysis software, and collaborative tools. These improvements are needed for the next generation of AUC-based research. The Open AUC Project combines on-going work from several different groups. A new base instrument is described, one that is designed from the ground up to be an analytical ultracentrifuge. This machine offers an open architecture, hardware standards, and application programming interfaces for detector developers. All software will use the GNU Public License to assure that intellectual property is available in open source format. The Open AUC strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have plagued AUC innovation for the last 20 years. This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems. The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software. Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    The deprivation of certitude, legitimacy and hope: foreign national prisoners and the pains of imprisonment

    Get PDF
    At the end of March 2015 there were 10,481 foreign nationals (defined as non-UK passport holders) held in prisons in England and Wales, representing 12 per cent of the overall prison population. The latest published figures from December 2014 also indicated that there were a further 394 immigration detainees also being held in various prisons, rather than Immigration Removal Centres, across England and Wales. Although Sykes’s deprivation model with its associated ‘pains of imprisonment’ has been exhaustively explored by penologists, this article argues that there are a new range of ‘pains’ uniquely faced by foreign national prisoners in England and Wales who come under the scrutiny of the Home Office’s Immigration Service. Drawing on quasi-ethnographic fieldwork in a Specialist Foreign National Prison, this article discusses the new pains relating to a lack of certitude, legitimacy and hope with regard to both their carceral and post-carceral lives

    Identification of T-Cell Antigens Specific for Latent Mycobacterium Tuberculosis Infection

    Get PDF
    BACKGROUND: T-cell responses against dormancy-, resuscitation-, and reactivation-associated antigens of Mycobacterium tuberculosis are candidate biomarkers of latent infection in humans. METHODOLOGY/PRINCIPAL FINDINGS: We established an assay based on two rounds of in vitro restimulation and intracellular cytokine analysis that detects T-cell responses to antigens expressed during latent M. tuberculosis infection. Comparison between active pulmonary tuberculosis (TB) patients and healthy latently M. tuberculosis-infected donors (LTBI) revealed significantly higher T-cell responses against 7 of 35 tested M. tuberculosis latency-associated antigens in LTBI. Notably, T cells specific for Rv3407 were exclusively detected in LTBI but not in TB patients. The T-cell IFNgamma response against Rv3407 in individual donors was the most influential factor in discrimination analysis that classified TB patients and LTBI with 83% accuracy using cross-validation. Rv3407 peptide pool stimulations revealed distinct candidate epitopes in four LTBI. CONCLUSIONS: Our findings further support the hypothesis that the latency-associated antigens can be exploited as biomarkers for LTBI

    High-Resolution X-Ray Structure of the Trimeric Scar/WAVE-Complex Precursor Brk1

    Get PDF
    The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric α-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex
    corecore