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Abstract
Voting can abstractly model any decision-making scenario and as such it has been extensively

studied over the decades. Recently, the related literature has focused on quantifying the impact of

utilizing only limited information in the voting process on the societal welfare for the outcome, by

bounding the distortion of voting rules. Even though there has been signi�cant progress towards

this goal, almost all previous works have so far neglected the fact that in many scenarios (like pres-

idential elections) voting is actually a distributed procedure. In this paper, we consider a se�ing in

which the voters are partitioned into disjoint districts and vote locally therein to elect local winning

alternatives using a voting rule; the �nal outcome is then chosen from the set of these alternatives.

We prove tight bounds on the distortion of well-known voting rules for such distributed elections

both from a worst-case perspective as well as from a best-case one. Our results indicate that the

partition of voters into districts leads to considerably higher distortion, a phenomenon which we

also experimentally showcase using real-world data.

1 Introduction

In a decision-making scenario, the task is to aggregate the opinions of a group of di�erent people into

a common decision. �is process is o�en distributed, in the sense that smaller groups �rst reach an

agreement, and then the �nal outcome is determined based on the options proposed by each such

group. �is can be due to scalability issues (e.g., it is hard to coordinate a decision between a very

large number of participants), due to di�erent roles of the groups (e.g., when each group represents a

country in the European Union), or simply due to established institutional procedures (e.g., electoral

systems). For example, in the US presidential elections
1
, the voters in each of the 50 states cast their

votes within their regional district, and each state declares a winner; the �nal winner is taken as the

one that wins a weighted plurality vote over the state winners, with the weight of each state being

proportional to its size.

�e foundation of utilitarian economics, which originated near the end of the 18th century, revolves

around the idea that the outcome of a decision making process should be one that maximizes the well-

being of the society, which is typically captured by the notion of the social welfare. A fundamental

question that has been studied extensively in the related literature is whether the rules that are being

used for decision making actually achieve this goal, or to what extend they fail to do so. However, this

line of work has so far focused almost exclusively on scenarios where the process is centralized. �is

naturally motivates the following question:
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What is the e�ect of distributed decision making on the social welfare?

�e importance of this investigation is highlighted by the example of the 2016 US presidential

election [Wikipedia, 2016]. While 48.2% of the US population (that participated in the election) viewed

Hillary Clinton as the best candidate, Donald Trump won the election with only 46.1% of the popular

vote. �is irregularity happened due to the district-based electoral system, and the outcome would

have been di�erent if there was just a single pool of voters instead. A similar phenomenon occurred

in the 2000 presidential election as well, when Al Gore won the popular vote, but George W. Bush was

elected president.

1.1 Our Setting and Contribution

For concreteness, we use the terminology of voting as a proxy for any distributed decision-making

scenario. A set of voters are called to vote over a set of alternatives through a district-based election.

In other words, the set of voters is partitioned into districts and each district holds a local election over

all alternatives, following some voting rule. �e winner of each local election is awarded a weight that

depends on the district, and the overall winner is chosen to be the alternative with the highest weight.

Observe that this se�ing models many scenarios of interest, such as those highlighted in the above

discussion. When it comes to the partition of voters into districts and their weights, we consider the

following three cases: symmetric districts, in which every district has the same number of voters and

contributes the same weight to the �nal outcome, unweighted districts, in which the weight is still the

same, but the sizes of the districts may vary, and �nally unrestricted districts, where the sizes and the

weights of the districts are unconstrained.

We are interested in the e�ect of the distributed nature of such elections on the social welfare of

the voters (the sum of their valuations for the chosen outcome). Typically, when there is a single pool

of voters, this e�ect is quanti�ed by a measure known as distortion [Procaccia and Rosenschein, 2006],

which is de�ned as the worst-case ratio (over all possible valuation pro�les for the voters) between the

maximum social welfare for any alternative and the social welfare for the alternative chosen through

voting. Our goal in this paper is to bound the distributed distortion of voting rules, which is a natural

extension of the distortion measure for the case of district-based elections, both from a worst- and a

best-case perspective.

We start our technical analysis in Section 3 by considering general voting rules (which might have

access to the numerical valuations of the voters) and provide distributed distortion guarantees for

any voting rule as a function of the worst-case distortion of the voting rule when applied to a single

district. As a corollary, we obtain distributed distortion bounds for Range Voting, the rule that outputs

the alternative that maximizes the social welfare when the valuations are a priori known, and prove

that this rule is optimal among all voting rules for the problem. �en, in Section 4, we consider ordinal

voting rules (which do not have access to the valuations of the voters) and provide general lower

bounds on the distributed distortion of any such rule. For the widely-used Plurality Voting, the rule

that elects the alternative with most �rst position appearances in the ordinal preferences of the voters,

we provide tight distortion bounds and prove that it is asymptotically the best ordinal voting rule in

terms of distributed distortion. An overview of our distributed distortion bounds for Range Voting and

Plurality Voting can be found in Table 1. We complement these theoretical �ndings with indicative

simulations based on real datasets in Section 5, showcasing the distributed distortion of well-known

voting rules on “average case” and “average worst-case” district partitions.

Driven by the inherently large distributed distortion of voting rules under worst-case partitions

of the voter into districts, in Section 6 we explore whether districting, i.e., manually partitioning the

voters into a given number of symmetric districts in the best-way possible, can lead to be�er outcomes.

More concretely, we study whether we can recover the winner of Range Voting (that is, the optimal

alternative) or Plurality Voting as if these rules were applied on just a single pool of voters. For Range
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type Range Voting Plurality Voting

symmetric 1 + mk
2 1 + 3m2k

4

unweighted 1 + m
2

(
n+maxd∈D nd
mind∈D nd

− 1
)

1 + m2

4

(
3n+maxd∈D nd

mind∈D nd
− 1
)

unrestricted 1 +m
(

n
mind∈D nd

− 1
)

1 +m2
(

n
mind∈D nd

− 1
2

)
Table 1: An overview of the distributed distortion guarantees achieved by Range Voting and Plurality Voting in

worst-case district-based elections. Here, n is the number of voters, m is the number of alternatives, D is the

set of districts (which de�nes a partition of the set of voters) such that district d ∈ D consists of nd voters, and

k = |D| is the number of districts.

Voting, our results are mostly negative: we present instances where recovering the optimal alternative

is not possible under any districting, and prove that computing an optimal districting is NP-hard.

In contrast, the problem is much easier for Plurality: we can compute a districting that leads to the

election of the single-district Plurality winner in polynomial time. We conclude with possible avenues

for future work in Section 7.

1.2 Related Work

�e distortion framework was �rst proposed by Procaccia and Rosenschein [2006] and subsequently

it was adopted by a series of papers; for instance, see [Amanatidis et al., 2020; Anshelevich et al., 2018;

Anshelevich and Postl, 2017; Benade et al., 2017; Bhaskar et al., 2018; Boutilier et al., 2015; Caragiannis

et al., 2017; Filos-Ratsikas and Miltersen, 2014; Mandal et al., 2019]. �e original idea of the distortion

measure was to quantify the loss in performance due to the lack of information, in the sense of how

well an ordinal voting rule (that has access only to the preference orderings induced by the numerical

values of the voters, and not to the exact values themselves) can approximate the cardinal social welfare

objective. In our paper, this loss of e�ciency will be a�ributed to two factors: always the fact that the

election is district-based, and possibly also the fact that the voting rules employed are ordinal.

Our se�ing follows closely that of Caragiannis and Procaccia [2011], Boutilier et al. [2015] and

Caragiannis et al. [2017], with the novelty of introducing district-based elections and measuring their

(distributed) distortion. �e worst-case distortion bounds of voting rules in the absence of districts

can be found in the aforementioned papers. Besides deterministic voting rules, these papers have also

studied randomized voting rules and showed that they naturally lead to considerably be�er distortion

bounds. However, deterministic rules are much easier and be�er understood by the people who are

called in to vote, which is why they are extensively used in the practical scenarios we have in mind

(e.g. elections). Consequently, in this paper we focus entirely on deterministic voting rules.

�e ill e�ects of district-based elections have been highlighted in a series of related articles, mainly

revolving around the issue of gerrymandering [Schuck, 1987], that is, the systematic manipulation

of the geographical boundaries of an electoral constituency in favor of a particular political party.

�e e�ects of gerrymandering have been studied in the related literature before [Borodin et al., 2018;

Cohen-Zemach et al., 2018; Lev and Lewenberg, 2019; Ito et al., 2019], but not in relation to the induced

distortion of the elections. While our district partitions are not necessarily geographically-based, our

worst-case bounds capture the potential e�ects of gerrymandering on the deterioration of the social

welfare. Other works on district-based elections and distributed decision-making include [Bachrach et
al., 2016; Erdélyi et al., 2015].

One of the most closely related works to ours is that of Borodin et al. [2019], who study the dis-

tortion of primary elections. In their se�ing, each district corresponds to a political party, and the

members of the party vote over a set of alternatives, in order to elect their representative, who then

competes in an election with the representatives of the other parties. �is model is inherently di�er-
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ent from ours: in our case the voters are partitioned into districts and vote over all alternatives, while

in their case the voters vote only for the representatives, who are selected by the members of their

political parties.

Related to our results in Section 6 is the paper by Lewenberg et al. [2017], where the authors explore

the e�ects of districting with respect to the winner of Plurality, when ballot boxes are placed on the real

plane, and voters are partitioned into districts based on their nearest ballot box. �e extra constraints

imposed by the geological nature of the districts in their se�ing leads to an NP-hardness result for the

districting problem, whereas for our unconstrained (other than being symmetric) districts, we prove

that making the Plurality winner the winner of the general election is always possible in polynomial

time. In contrast, the problem becomes NP-hard when we are interested in the winner of Range Voting

instead of Plurality.

2 Preliminaries

In this section we give formal preliminary de�nitions, notation and examples.

2.1 District-based Elections

We start by de�ning the types of elections on which we focus in this paper. A district-based election E
is de�ned as a tuple (M,N ,D,w,v, f), where

• M is a set of m alternatives.

• N is a set of n voters.

• D is a set of k districts that de�ne a partition of the set of voters. District d ∈ D contains nd
voters such that

∑
d∈D nd = n. For each voter i ∈ N , we denote by d(i) ∈ D the district she

belongs to.

• w = (wd)d∈D is a weight-vector consisting of a weight wd ∈ R>0 for each district d ∈ D.

• v = (v1, . . . ,vn) is a valuation pro�le for the n voters such that vi = (vij)j∈M contains the

valuation of voter i for all alternatives. For every district d ∈ D, we denote by vd = (vi)i:d(i)=d
the valuation subpro�le of the voters that belong to district d so thatv =

⋃
d∈D vd. Following the

standard convention in the related literature, we adopt the unit-sum representation of valuations,

according to which

∑
j∈M vij = 1 for every voter i ∈ N . Let Vn denote the set of valuation

pro�les for n voters.

• f is a voting rule that maps a valuation (sub)pro�le to a single alternative inM.

For each district d ∈ D, a local election between its members takes place, and the winner of this

election is the alternative jd = f(vd) that gets elected according to the voting rule f , when given as

input the valuation subpro�le vd. �e outcome of the district-based election E is an alternative

j(E) ∈ arg max
j∈M

{∑
d∈D

wd · 1 {j = jd}

}
,

where 1 {X} is equal to 1 if the event X is true, and 0 otherwise. In simple words, the winner j(E)
of the district-based election is the alternative with the highest weighted approval score, breaking ties

arbitrarily. For example, when all weights are equal to 1, j(E) is the alternative that wins the most

local elections.

We consider the following non-exhaustive list of district-based elections, depending on the sizes

and weights of the districts:
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• Symmetric elections: all districts consist of the same number of voters and have the same weight,

i.e., nd = n/k and wd = 1 for each d ∈ D.

• Unweighted elections: all districts have the same weight, but not necessarily the same number of

voters, i.e., wd = 1 for each d ∈ D.

• Unrestricted elections: there are no restrictions on the sizes and weights of the districts.

Clearly, the class of symmetric elections is a subclass of that of unweighted elections, which in turn is

a subclass of the class of unrestricted elections.

2.2 Social Welfare and Distortion

For a given valuation pro�le v, the social welfare of the voters for alternative j ∈ M is de�ned as the

total value that the voters have for j:

SW(j|v) =
∑
i∈N

vij .

Clearly, the social welfare is a benchmark that distinguishes the good alternatives from the bad ones,

and our goal is to elect the alternative that maximizes the social welfare. However, this may not always

be possible due to various reasons, like limited access to the valuations of the voters. To quantify the

loss of welfare due to the use of a particular voting rule we use the notion of distortion. In our district-

based elections se�ing, the voting rule has a local e�ect within each district, and a global e�ect over

the whole district-based election.

�e local distortion of a voting rule f in a local election consisting of η voters is de�ned as the

worst-case ratio, over all possible valuation pro�les of the η voters participating in the local election,

between the maximum social welfare of any alternative and the social welfare of the alternative chosen

by the voting rule:

distη(f) = sup
v∈Vη

maxj∈M SW(j|v)

SW(f(v)|v)
.

We have that dist1(f) ≤ dist2(f) ≤ ... ≤ distn(f). To simplify our discussion, we denote by

dist(f) = distn(f) the (single-district) distortion of voting rule f , which is the classical de�nition

of distortion used in the literature for elections without districts.

�e distributed distortion of a voting rule f in district-based elections of k districts is de�ned as

the worst-case ratio, over all possible district-based elections E that use f as the voting rule in the

local elections and partition the voters into k districts, between the maximum social welfare of any

alternative and the social welfare of the alternative chosen by the election:

ddistk(f) = sup
E:f∈E,|D|=k

maxj∈M SW(j|v)

SW(j(E)|v)
.

In simple words, the distributed distortion of a voting rule f is the worst-case over all the possible val-

uations that voters can have and over all possible ways of partitioning these voters into k districts. We

trivially have that dist(f) = ddist1(f). For notational convenience, we will drop k from ddistk(f)
when it is clear from context, and simply write ddist(f).

2.3 Voting Rules

We distinguish the voting rules as cardinal and ordinal, depending on the amount of information related

to the valuation pro�le they use to decide the outcome. In particular, a voting rule f is cardinal if it
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decides the winning alternative by using the exact numerical values of the voters for the alternatives.

�e most prominent cardinal voting rule is Range Voting (RV, for short), which outputs the alternative

that maximizes the social welfare.

De�nition 2.1 (Range Voting). Given a valuation pro�le v = (v1, ...,vη) with η voters, Range Voting

elects an alternative in arg maxj∈M SW(j|v).

In contrast, an ordinal voting rule has access only to the preference orderings induced by the values

of the voters, and not to the actual numerical values themselves. Formally, for a valuation pro�le v,

we denote by �v= (�v
i )i∈N the ordinal preference pro�le formed by the values of the voters for the

alternatives (assuming some �xed tie-breaking rule) so that j �v
i j
′

(read voter i prefers alternative j
to alternative j′ according to v) if and only if vij ≥ vij′ for every voter i ∈ N . �en, a voting rule f is

ordinal if for any two valuation pro�les v and v′ such that �v=�v′
, it holds that f(v) = f(v′).

�ere is a plethora of ordinal voting rules. Out of all these, we will be interested in the most widely

used such rule, known as Plurality Voting (PV, for short), which selects the alternative with the most

�rst position appearances in the ordinal preferences of the voters. Besides its simplicity, the importance

of this voting rule also comes from the fact that it is used extensively in practice. For instance, it is

used in presidential elections in a number of countries like the USA and the UK.

De�nition 2.2 (Plurality Voting). Given a valuation pro�le v = (v1, ...,vη) with η voters and its

induced ordinal preference pro�le �v
, PV elects an alternative in arg maxj∈M |i ∈ N : j �v

i j
′,∀j′ ∈

M \ {j}|.

Two very important properties that are satis�ed by most natural voting rules (including RV and PV)

is unanimity and Pareto e�ciency. A voting rule f is unanimous if whenever all voters agree that an

alternative is the best among all others, then this alternative is elected. Formally, whenever there exists

an alternative j ∈ M for whom vij ≥ vij′ for all voters i ∈ N and alternatives j′ ∈ M \ {j}, then

f(v) = j. A voting rule f is (strictly) Pareto e�cient if whenever all voters agree that an alternative j
is be�er than j′, then j′ cannot be elected. Formally, if vij > vij′ for all i ∈ N , then f(v) 6= j′.2

It is not hard to observe that for any voting rule f that is not Pareto e�cient, we can construct a

Pareto e�cient rule f ′ such that SW(f ′(v)) ≥ SW(f(v)), for every valuation pro�le v. In particular,

for every input on which f outputs a Pareto e�cient alternative, f ′ outputs the same alternative. For

every input on which f outputs an alternative that is not Pareto e�cient, f ′ outputs a maximal Pareto

improvement, that is, a Pareto e�cient alternative which all voters (weakly) prefer more than the

alternative chosen by f . Also, Note also that Pareto e�ciency implies unanimity. �erefore, in our

lower bound proofs, we will use both of these properties without loss of generality.

2.4 An example

Let us present an illustrative example to fully understand all aspects of our model. Consider an instance

with m = 3 alternatives M = {a, b, c}, n = 7 voters N = {1, ..., 7}, and the pro�les v and �v

described in Table 2. According to these valuations, we have SW(a|v) = 3.9, SW(b|v) = 1.7 and

SW(c|v) = 1.4. Hence alternative a is the one that maximizes the social welfare of the voters.

Before we de�ne a particular district-based election, let us examine how RV and PV behave when

there is a single district. By de�nition RV elects the optimal alternative RV(v) = a and achieves

distortion dist(RV) = 1. On the other hand, PV elects alternative PV(v) = b as b has three �rst

2

We remark that Pareto e�ciency usually requires that there is no other alternative who all voters weakly prefer and who

one voter strictly prefers. For our lower bounds however, using the de�nition of strict Pareto e�ciency is su�cient; actually, it

makes our bounds even stronger. Also note that when the valuations do not exhibit ties (and therefore the induced preference

orderings are strict), the two de�nitions coincide.
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voter a b c

1 0.3 0.5 0.2
2 0.4 0.1 0.5
3 0.4 0.1 0.5
4 1 0 0
5 1 0 0
6 0.4 0.5 0.1
7 0.4 0.5 0.1

voter ranking

1 b �1 a �1 c
2 c �2 a �2 b
3 c �3 a �3 b
4 a �4 b �4 c
5 a �5 b �5 c
6 b �6 a �6 c
7 b �7 a �7 c

Table 2: �e valuation pro�le and its corresponding ordinal pro�le in the example given in Section 2.4.

position appearances in the ordinal preferences of the voters, compared to the two �rst appearances

of the other two alternatives. Hence PV achieves distortion dist(PV) = SW(a|v)
SW(b|v) = 3.9

1.7 ≈ 2.29.

Now consider a district-based election in which the voters are partitioned into k = 3 districts

D = {d1 = {1, 2, 3}, d2 = {4, 5}, d3 = {6, 7}} and the weights of the districts are given by the vector

w = (3, 2, 2). Hence, the winner of district d1 gets a weight of 3, while the winners of districts d2 and

d3 get a weight of 2; then, the winner of the election is the alternative with the highest total weight.

Let us see how RV and PV behave now. Since the welfare of the voters in d1 is 1.1 for a, 0.7 for

b, and 1.2 for c, we have that the winner in d1 using RV is RV(vd1) = c. Similarly, we can see that

RV(vd2) = a and RV(vd3) = b. Consequently, the overall winner under RV is c and the distributed

distortion is ddist(RV) = 3.9
1.4 ≈ 2.78. Looking at the ordinal preferences of the voters in the districts,

we can also see that the outcome is exactly the same for PV as well. �is shows that the distributed

distortion of a voting rule is inherently larger than its distortion. Our goal in the upcoming sections

will be to quantify how worst it actually is, and also reveal any possible relation between the two

distortion notions.

3 �e E�ect of Districts for General Voting Rules

Our aim in this section is to showcase the immediate e�ect of using districts to distributively aggregate

votes on the quality of the chosen outcome. To this end, we present tight bounds on the distributed

distortion of all voting rules. We will �rst state a general theorem relating the distributed distortion

ddist(f) to the distortion dist(f) of f . �e main proof strategy of the following theorem is to

carefully exploit the de�nition of dist(f) to bound the social welfare of both the district-based election

winner and that of the optimal alternative.

�eorem 3.1. Let f be a voting rule with dist(f) = γ. �en, its distributed distortion ddistk(f) is at
most

(i) γ + γ2mk
γ+1 for symmetric elections;

(ii) γ + γ2m
γ+1

(
n+maxd∈D nd
mind∈D nd

− 1
)
for unweighted elections;

(iii) γ + γm
(

n
mind∈D nd

− 1
)
for unrestricted elections.

Proof. We prove the �rst two parts together, and the third one separately.

Parts (i) and (ii). Consider a district-based unweighted election E with a setM of m alternatives,

a set N of n voters, a set D of k districts such that each district d consists of nd voters (if the election

is symmetric, then nd = n/k) and has weight wd = 1. Let v be the valuation pro�le consisting of
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the valuations of all voters for all alternatives. Let a = j(E) be the winner of the election and denote

by A ⊆ D the set of districts in which a wins according to f . �en, we can lower-bound the social

welfare of a by the total value that the voters in A have for a:

SW(a|v) =
∑
i∈N

via ≥
∑

i:d(i)∈A

via. (1)

By the de�nition of the local distortion distnd(i)(f) and the distortion dist(f) = γ we have that∑
i:d(i)∈A vij∑
i:d(i)∈A via

≤ distnd(i)(f) ≤ γ ⇔
∑

i:d(i)∈A

via ≥
1

γ

∑
i:d(i)∈A

vij

for every j ∈M. Hence, summing this inequality over all j ∈M, and using the unit-sum assumption

according to which

∑
j∈M vij = 1 for every voter i ∈ N , we have that∑

i:d(i)∈A

via ≥
1

γm

∑
j∈M

∑
i:d(i)∈A

vij =
1

γm

∑
i:d(i)∈A

∑
j∈M

vij =
1

γm

∑
d∈A

nd

Combining this inequality with the fact that

∑
d∈A nd ≥ |A| ·mind∈D nd, we obtain∑

i:d(i)∈A

via ≥
1

γm
·
∑
d∈A

nd ≥
1

γm
· |A| ·min

d∈D
nd. (2)

Let b be the optimal alternative, and denote by B ⊂ D the set of districts in which b is the winner.

We split the social welfare of b into three parts:

SW(b|v) =
∑

i:d(i)∈A

vib +
∑

i:d(i)∈B

vib +
∑

i:d(i)6∈A∪B

vib.

We can now make the following observations:

• For the �rst part, since awins in the districts ofA according to f , by the de�nitions of distnd(i)(f)
and dist(f) = γ, we have that ∑

i:d(i)∈A

vib ≤ γ
∑

i:d(i)∈A

via.

• For the second part, since the value of each voter in B for b is by de�nition at most 1, we have

that ∑
i:d(i)∈B

vib ≤
∑
d∈B

nd.

• For the third part, consider any district d 6∈ A ∪ B and let c ∈ M \ {a, b} be the winner in d
according to f . By the de�nition of dist(f) we have that∑

i:d(i)=d

vic ≥
1

γ

∑
i:d(i)=d

vib.

By the unit-sum assumption, we further have that

nd ≥
∑

i:d(i)=d

vib +
∑

i:d(i)=d

vic ≥
(

1 +
1

γ

) ∑
i:d(i)=d

vib.

Adding over all districts d 6∈ A ∪B and rearranging terms gives us∑
i:d(i)6∈A∪B

vib ≤
γ

γ + 1

∑
d6∈A∪B

nd.
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• Since γ ≥ 1, 1− γ
γ+1 ≤

γ
γ+1 .

• Since a is the election winner, |B| ≤ |A| and |A| ≥ 1.

Pu�ing all of these together, we upper-bound the social welfare of b as follows:

SW(b|v) ≤ γ
∑

i:d(i)∈A

via +
∑
d∈B

nd +
γ

γ + 1

∑
d 6∈A∪B

nd

= γ
∑

i:d(i)∈A

via +
∑
d∈B

nd +
γ

γ + 1

(
n−

∑
d∈A

nd −
∑
d∈B

nd

)

= γ
∑

i:d(i)∈A

via +

(
1− γ

γ + 1

)∑
d∈B

nd +
γ

γ + 1

(
n−

∑
d∈A

nd

)

≤ γ
∑

i:d(i)∈A

via +
γ

γ + 1

(
n+

∑
d∈B

nd −
∑
d∈A

nd

)

≤ γ
∑

i:d(i)∈A

via +
γ

γ + 1

(
n+ |B|max

d∈D
nd − |A|min

d∈D
nd

)

≤ γ
∑

i:d(i)∈A

via +
γ

γ + 1
· |A| ·

(
n+ max

d∈D
nd −min

d∈D
nd

)
(3)

Hence, by (1), (2) and (3), we obtain

ddistk(f) =
SW(b|v)

SW(a|v)

≤
γ
∑

i:d(i)∈A via + γ
γ+1 · |A| · (n+ maxd∈D nd −mind∈D nd)∑

i:d(i)∈A via

≤ γ +
γ2m

γ + 1

(
n+ maxd∈D nd

mind∈D nd
− 1

)
.

�e proof of part (ii) is now complete. For part (i), we get the desired bound of γ + γ2mk
γ+1 by simply

se�ing mind∈D nd = maxd∈D nd = n/k.

Part (iii). Observe that the proof of part (iii) does not follow directly from the proof of part (ii) since

now that the districts may have arbitrary weights, the number of districts that the election winner a
wins does not need to be higher than the number of districts in which b is the winner. In other words,

it might be the case that |B| > |A|. However, since |A| ≥ 1, inequality (2) can be simpli�ed to∑
i:d(i)∈A

via ≥
1

γm
·min
d∈D

nd. (4)

For the optimal alternative bwe can also simplify our arguments by using the trivial fact that all voters

not in districts of A have by de�nition value at most 1 for b. �en, we obtain

SW(b|v) =
∑

i:d(i)∈A

vib +
∑

i:d(i) 6∈A

vib

≤ γ
∑

i:d(i)∈A

via +
∑
d6∈A

nd

9



= γ
∑

i:d(i)∈A

via + n−
∑
d∈A

nd

≤ γ
∑

i:d(i)∈A

via + n−min
d∈D

nd. (5)

By combining (1), (4) and (5), we �nally have that

ddistk(f) =
SW(b|v)

SW(a|v)

≤
γ
∑

i:d(i)∈A via + n−mind∈D nd∑
i:d(i)∈A via

≤ γ + γm

(
n

mind∈D nd
− 1

)
.

�is completes the proof.

We now turn to concrete voting rules and consider Range Voting, which is the most natural rule for

social welfare maximization. By the de�nition of the rule we have that dist(RV) = 1, and therefore

�eorem 3.1 immediately implies the following corollary.

Corollary 3.2. �e distributed distortion ddist(RV) of RV in district-based elections is at most

(i) 1 + mk
2 for symmetric elections;

(ii) 1 + m
2

(
n+maxd∈D nd
mind∈D nd

− 1
)
for unweighted elections;

(iii) 1 +m
(

n
mind∈D nd

− 1
)
for unrestricted elections.

We continue by presenting matching lower bounds on the distortion of any voting rule in a district-

based election. �e high-level idea in the proof of the following theorem is that the election winner

is chosen arbitrarily among the alternatives with the highest weight, which might lead to the cardinal

information within the districts to be lost.

�eorem 3.3. �e distributed distortion of all voting rules is at least

(i) 1 + mk
2 for symmetric elections;

(ii) 1 + m
2

(
n+maxd∈D nd
mind∈D nd

− 1
)
for unweighted elections;

(iii) 1 +m
(

n
mind∈D nd

− 1
)
for unrestricted elections.

Proof. We prove the �rst two parts together and the third one separately.

Parts (i) and (ii). Consider an unweighted district-based election with a set of districtsD = {d1, ..., dk}
such thatm > k. District d` consists of n` voters for ` ∈ [k]. We will de�ne the valuations of the voters

such that there are k di�erent district winners {a, b, c3, ..., ck}. �en, without loss of generality, the

election winner is one of these alternatives, say a. Let ε ∈ (0, 1/m). We de�ne the following valuation

pro�le v:

• all voters in district d1 have value 1/m+ ε for a and 1/m− ε
m−1 for every other alternative;

• all voters in district d2 have value 1 for b and 0 for everyone else;

10



• all voters in district d` for ` ≥ 3 have value 1/2 + ε for c`, 1/2− ε for b and 0 for everyone else.

Note that since the voting rule is unanimous without loss of generality, the winner of the �rst district

is a, the winner of the second district is b and the winner of district d` for ` ≥ 3 is c`, as desired.

�e optimal alternative is b with

SW(b|v) =

(
1

m
− ε

m− 1

)
n1 + n2 +

(
1

2
− ε
)

(n− n1 − n2),

while the winner of the election a has

SW(a|v) =

(
1

m
+ ε

)
n1.

As ε tends to zero, the ratio SW(b)/SW(a) becomes

1
mn1 + n2 + 1

2(n− n1 + n2)
1
mn1

= 1 +
m

2
·
(
n+ n2
n1

− 1

)
.

�e bounds follow by se�ing n1 = mind∈D nd and n2 = maxd∈D nd for unweighted elections, and

n1 = n2 = n/k for symmetric elections.

Part (iii). For the unrestricted case, consider a district-based election in which there is a district

d∗ ∈ D with weight wd∗ >
∑

d∈D\{d∗}wd. Since d∗ has so much weight, the winner of this district is

also the election winner. Let a and b be two distinguished alternatives, and ε ∈ (0, 1/m). We de�ne

the following valuation pro�le v:

• all voters in district d∗ have value 1/m+ ε for a and 1/m− ε
m−1 for every other alternative;

• all voters in each district d ∈ D \ {d∗} have value 1 for b and 0 for everyone else.

Since the voting rule is unanimous without loss of generality, a is the winner in district d∗ and b is the

winner in every other district.

�e optimal alternative is b with

SW(b|v) =

(
1

m
− ε

m− 1

)
nd∗ + n− nd∗ ,

while the election winner is alternative a with

SW(a|v) =

(
1

m
+ ε

)
nd∗ .

As ε tends to zero, the ratio SW(b)/SW(a) becomes

1
mnd∗ + n− nd∗

1
mnd∗

= 1 +m

(
n

nd∗
− 1

)
,

and the proof follows by se�ing nd∗ = mind∈D nd.

Note that we can avoid any tie-breaking issues in parts (i) and (ii), by slightly modifying the in-

stances used in the above proof. Speci�cally, for symmetric elections, we can de�ne the valuations

so that the optimal alternative loses in all districts, which yields a lower bound of 1 + m(k−1)
2 . For

unweighted elections, we can create two small districts (instead of just one) in which the winner is

alternative a; this yields a lower bound of 1 + m
2

(
n+maxd∈D nd
2mind∈D nd

− 2
)

. Furthermore, observe that for

unweighted and unrestricted elections the worst case occurs when there are only two districts such

that mind∈D nd = 1 and maxd∈D nd = n− 1; then, we obtain a lower bound of 1 +m(n− 1) in both

cases. Such modi�cations can also be applied to the lower-bound instances given in the upcoming

sections. However, we avoid presenting our lower bounds in this way to simplify our discussion.
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4 Ordinal voting rules and Plurality

Even though Range Voting is quite natural, its documented drawback is that it requires a very detailed

informational structure from the voters, making the elicitation process rather complicated and subject

to strategic behavior. For this reason, most voting rules that have been applied in practice are ordinal,

as such rules present the voters with the much less demanding task of reporting a preference ordering

over the alternatives, rather than actual numerical values.

Hence, we now turn our a�ention to ordinal voting rules, and start our investigation with the

most simple and widely used such rule, Plurality Voting. It is known that the distortion dist(PV)
of PV is Θ(m2) [Caragiannis and Procaccia, 2011; Caragiannis et al., 2017]. �erefore, by plugging

in this number to our general bound in �eorem 3.1, we obtain corresponding upper bounds for PV,

which are rather large; for example, the bounds are O(m3k) for symmetric elections, and O(m3n) for

unweighted elections. However, by taking advantage of the structure of the voting rule, we are able to

obtain much be�er and tight bounds.

�eorem 4.1. �e distributed distortion ddistk(PV) of PV is exactly

(i) 1 + 3m2k
4 for symmetric elections;

(ii) 1 + m2

4

(
3n+maxd∈D nd

mind∈D nd
− 1
)
for unweighted elections;

(iii) 1 +m2
(

n
mind∈D nd

− 1
2

)
for unrestricted elections.

Proof. We prove the upper and the lower bounds separately, starting with the former.

Upper bounds. Consider a district-based unweighted election E with a setM of m alternatives, a

set N of n voters, a set D of k districts such that each district d ∈ D consists of nd voters and has

weightwd = 1. Let v = (vi)i∈N be the valuation pro�le consisting of the valuations of all voters for all

alternatives, which induces the ordinal preference pro�le �v= (�v
i )i∈N . To simplify our discussion,

let Nd(j) be the set of voters in district d that rank alternative j at the �rst position, and also set

nd(j) = |Nd(j)|.
Let a = j(E) be the winner of the election and denote by A ⊆ D the set of districts in which a

wins according to PV. �en, we clearly have that

SW(a|v) =
∑
i∈N

via ≥
∑

i:d(i)∈A

via. (6)

For each voter i ∈ Nd(a) we have that via ≥ vij for every j ∈ M. By the unit-sum assumption, this

implies that via ≥ 1
m . Furthermore, since a has the plurality of votes in each district d ∈ A, we have

that nd(a) ≥ nd(j) for every j ∈M. By the fact that

∑
j∈M nd(j) = nd, we obtain that nd(a) ≥ nd

m .

We also have that

∑
d∈A nd ≥ |A| ·mind∈D nd. �erefore,∑

i:d(i)∈A

via ≥
∑
d∈A

∑
i∈Nd(a)

via ≥
1

m
·
∑
d∈A

nd(a) ≥ 1

m2

∑
d∈A

nd ≥
1

m2
· |A| ·min

d∈D
nd. (7)

Let b the optimal alternative, and denote by B ⊂ D the set of districts in which b is the winner.

We split the social welfare of b into the following three parts:

SW(b|v) =
∑

i:d(i)∈A

vib +
∑

i:d(i)∈B

vib +
∑

i:d(i)6∈A∪B

vib. (8)
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In what follows, we will bound each term of the above sum individually. First consider a district d ∈ A.

�en, the welfare of the voters in d for b can be wri�en as∑
i:d(i)=d

vib =
∑

i∈Nd(a)

vib +
∑

i∈Nd(b)

vib +
∑

i 6∈Nd(a)∪Nd(b)

vib.

Since a is the favorite alternative of every voter i ∈ Nd(a), vib ≤ via. By de�nition, the value of every

voter i ∈ Nd(b) for b is at most 1. �e value of every voter i 6∈ Nd(a)∪Nd(b) for b can be at most 1/2
since otherwise b would be the favorite alternative of such a voter. Combining these observations, we

get ∑
i:d(i)=d

vib ≤
∑

i∈Nd(a)

via + nd(b) +
1

2

∑
j 6=a,b

nd(j)

=
∑

i∈Nd(a)

via +
1

2
nd(b) +

1

2

∑
j 6=a

nd(j)

=
∑

i∈Nd(a)

via +
1

2
nd(b) +

1

2

(
nd − nd(a)

)

≤
∑

i:d(i)=d

via +
1

2
nd(a) +

1

2

(
nd − nd(a)

)
=

∑
i:d(i)=d

via +
1

2
nd,

where the inequality follows by considering the value of all voters in d for alternative a (not only

the value of the voters that rank a �rst), as well as by the fact that a wins b by plurality, and thus

nd(b) ≤ nd(a). By summing over all districts in A, we can bound the �rst term of (8) as follows:∑
i:d(i)∈A

vib ≤
∑

i:d(i)∈A

via +
1

2

∑
d∈A

nd. (9)

For the second term of (8), by de�nition we have that the value of each voter in the districts of B for

alternative b can be at most 1, and therefore∑
i:d(i)∈B

vib ≤
∑
d∈B

nd.

For the third term of (8), observe that the total value of the voters in a district d 6∈ A ∪ B for b must

be at most
3
4nd; otherwise b would be ranked �rst in strictly more than half of the ordinal preferences

of the voters and therefore win in the district. Hence,∑
i:d(i) 6∈A∪B

vib ≤
3

4

∑
d6∈A∪B

nd.

By substituting the bounds for the three terms of (8),and by taking into account the facts that |B| ≤ |A|
and |A| ≥ 1, we can �nally upper-bound the social welfare of b as follows:

SW(b|v) ≤
∑

i:d(i)∈A

via +
1

2

∑
d∈A

nd +
∑
d∈B

nd +
3

4

∑
d 6∈A∪B

nd

=
∑

i:d(i)∈A

via +
1

4

(
3n+

∑
d∈B

nd −
∑
d∈A

nd

)
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≤
∑

i:d(i)∈A

via +
1

4

(
3n+ |B| ·max

d∈D
nd − |A| ·min

d∈D
nd

)

≤
∑

i:d(i)∈A

via +
1

4
· |A| ·

(
3n+ max

d∈D
nd −min

d∈D
nd

)
(10)

By (6), (7) and (10), we can upper-bound the distributed distortion of PV as follows:

ddistk(PV) =
SW(b|v)

SW(a|v)

≤
∑

i:d(i)∈A via + 1
4 · |A| · (3n+ maxd∈D nd −mind∈D nd)∑

i:d(i)∈A via

≤ 1 +
m2

4

(
3n+ maxd∈D nd

mind∈D nd
− 1

)
.

�is completed the proof of part (ii). For part (i), we get the desired bound of 1+ 3m2k
4 by simply se�ing

mind∈D nd = maxd∈D nd = n/k.

For part (iii), Since |A| ≥ 1, we simplify inequality (7) to∑
i:d(i)∈A

via ≥
1

m2
·min
d∈D

nd. (11)

For the optimal alternative bwe also simplify our arguments by using the trivial fact that all voters not

in districts of A have by de�nition value at most 1 for b. �en, by also using inequality (9), we obtain

SW(b|v) =
∑

i:d(i)∈A

vib +
∑

i:d(i)6∈A

vib

≤
∑

i:d(i)∈A

via +
1

2

∑
d∈A

nd +
∑
d6∈A

nd

=
∑

i:d(i)∈A

via + n− 1

2

∑
d∈A

nd

≤
∑

i:d(i)∈A

via + n− 1

2
min
d∈D

nd. (12)

By combining (6), (11) and (12), we �nally have that

ddistk(PV) =
SW(b|v)

SW(a|v)

≤
∑

i:d(i)∈A via + n− 1
2 mind∈D nd∑

i:d(i)∈A via

≤ 1 +m2

(
n

mind∈D nd
− 1

2

)
.

�is completes the proof of the upper bounds.

Lower bounds. We now provide matching lower bounds. For unweighted districts, consider a

district-based election with a set of districts D = {d1, ..., dk} such that m > k, district d` consists

of n` voters for ` ∈ [k], and n1 is a multiple of m. We enumerate the alternatives asM = {j1, ..., jm}.
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We will de�ne the valuations of the voters for the alternatives with the goal of having k di�erent dis-

trict winners {a, b, c3..., ck}, where a = jm−1 and b = jm. �en, the election winner is one of these

district winners, say a.

We de�ne the approval votes and the valuation pro�le v of the voters as follows:

• �e voters in district d1 are split into m sets S1, …, Sm of size n1/m each, such that the voters

of set Si approve alternative ji. �e consistent valuations are such that the voters in set Si,
i ∈ [m−2] have value 1/2 for ji and b, the voters in set Sm−1 have value 1/m for all alternatives,

and the voters in set Sm have value 1 for b.

• �e voters in district d2 all approve alternative b and have value 1 for her.

• �e voters in district d` for ` ≥ 3 are split into two sets of equal size n`/2 such that the voters in

the �rst set approve alternative c` and the voters in the second set approve b. �e voters in the

�rst set have value 1/2 for both c` and b, while the voters in the second set have value 1 for b.

Since PV is Pareto e�cient, we can assume without loss of generality that the ties are resolved in favor

of the alternatives that we want to be the winners in the districts; that is, a wins district d1, b wins d2,

and c` wins d` for ` ≥ 3.

�e optimal alternative is b with

SW(b|v) =

(
(m− 2) · 1

2
+

1

m
+ 1

)
n1
m

+ n2 +
3

4

k∑
`=1

n`

=
n1
m2

+
1

4
(3n− n1 + n2).

while the winner of the election a has

SW(a|v) =
1

m
· n1
m

=
n1
m2

.

�erefore, the distributed distortion is equal to

SW(b|v)

SW(a|v)
=

n1
m2 + 1

4(3n− n1 + n2)
n1
m2

= 1 +
m2

4
·
(

3n+ n2
n1

− 1

)
.

�e bound follows by selecting n1 = mind∈D nd and n2 = maxd∈D nd. For part (i), we simply set

n1 = n2 = n/k.

For the unrestricted case, consider a general election with k districts such that there is a district

d∗ ∈ Dwith weightwd∗ >
∑

d∈D\{d∗}wd. Since d∗ has such a larger weight, the winner of this district

is the election winner as well. We enumerate the alternatives as M = {c1, ..., cm−2, a, b}. We de�ne

the approval votes and the valuation pro�le v of the voters as follows:

• District d∗: nd∗m voters approve a and have value
1
m for all alternatives;

nd∗
m voters approve b and

have value 1 for her;
nd∗
m voters approve alternative ci for i ∈ [m − 2], and have value 1/2 for

ci and b. We assume without loss of generality that the winner in this district is a, since PV is

Pareto e�cient.

• District d ∈ D \ {d∗}: all voters approve b and have value 1 for her.

�e optimal alternative is b with

SW(b|v) =
nd∗

m

(
1

m
+ 1 + (m− 2)

1

2

)
+ n− nd∗
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=
nd∗

m2
+ n− nd∗

2
.

while the election winner is alternative a with

SW(a|v) =
nd∗

m
· 1

m
=
nd∗

m2
.

�erefore, the distributed distortion is equal to

SW(b|v)

SW(a|v)
=

n∗d
m2 + n− nd∗

2
nd∗
m2

= 1 +m2 ·
(
n

nd∗
− 1

2

)
.

�e proof follows by selecting nd∗ = mind∈D nd.

We conclude this section by show that PV is asymptotically the best possible voting rule among all

deterministic ordinal voting rules.

�eorem 4.2. �e distributed distortion ddistk(f) of any deterministic ordinal voting rule f is

(i) Ω(m2k) for symmetric elections;

(ii) Ω
(
m2 n+maxd∈D nd

mind∈D nd

)
for unweighted elections;

(iii) Ω
(

m2n
mind∈D nd

)
for unrestricted elections.

Proof. Fix an arbitrary deterministic ordinal voting rule f ; as we explained earlier in Section 2, we can

assume without loss of generality that f is Pareto e�cient.

Parts (i) and (ii). Consider a district-based election with a set of districts D = {d1, ..., dk} such

that m > k, district d` consists of n` voters for ` ∈ [k], and n1 is an integer multiple of m. We

enumerate the alternatives as M = {j1, ..., jm} and let a = jm−1, b = jm. We will construct an

ordinal preference pro�le (and a consistent valuation pro�le) such that there are k di�erent district

winners {a, b, c3, ..., ck}. �en, without loss of generality, one of these alternatives will be the election

winner, say a.

We now de�ne the ordinal pro�le � and a valuation pro�le v such that �v=�:

• �e voters in district d1 are partitioned into m sets S1, …, Sm of equal size n1/m. �e voters in

set Si have the ranking ji � ji+1 � ... � jm � j1 � ... � ji−1. Since each alternative appears

exactly the same number of times in each position and f is Pareto e�cient, any alternative can

be selected as the winner of d1; thus, without loss of generality, we may assume that the winner

is a. �e valuations are such that the voters in set Si, i ∈ [m − 2] ∪ {m} have value 1 for

alternative ji, while the voters in set Sm−1 have value 1/m for all alternatives.

• All voters in district d2 rank alternative b �rst and the other alternatives arbitrarily in the re-

maining positions. Clearly, b is the winner of d2 (since everyone prefers b to any other alternative

and f is Pareto e�cient). �e valuations are such that all voters have value 1 for b.

• For each ` ∈ {3, ..., k}, the voters in each of district d` are partitioned into two sets X` and Y`
of equal size n`/2. All voters in X` rank alternative c` �rst, alternative b second, and then the

remaining alternatives arbitrarily. All voters in Y` rank alternative b �rst, alternative c` second,

and then the remaining alternatives arbitrarily. By the fact that f is Pareto e�cient, the winner

of district d` is either c` or b. Without loss of generality, we may assume that the tie is broken

in favor of c`. �e valuations are such that the voters in X` have value 1/2 for c` and b, while

the voters in Y` have value 1 for b.
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�e optimal alternative b has

SW(b|v) =

(
1

m
+ 1

)
n1
m

+ n2 +
3

4

k∑
`=3

n`

≥ n1
m2

+
1

4
(3n− 3n1 + n2).

On the other hand, the winner of the election a has

SW(a|v) =
1

m
· n1
m

=
n1
m2

.

Consequently, the distortion is

SW(b|v)

SW(a|v)
≥

n1
m2 + 1

4(3n− 3n1 + n2)
n1
m2

= 1 +
m2

4

(
3n+ n2
n1

− 3

)
.

�e bounds follow by se�ing n1 = mind∈D nd and n2 = maxd∈D nd for unweighted elections, and

n1 = n2 = n/k for symmetric elections.

Part (iii). For the unrestricted case, consider a district-based election with k districts such that there

is a district d∗ ∈ D with weight wd∗ >
∑

d∈D\{d∗}wd, and nd∗ is an integer multiple of m. Since d∗

has such a large weight, the winner of this district is the election winner as well. We enumerate the

alternatives as M = {j1, ..., jm} and let a = jm−1, b = jm. We de�ne the ordinal preferences of the

voters and their consistent valuation pro�le v as follows:

• District d∗: the voters are partitioned into m sets S1, …, Sm of equal size nd∗/m. �e voters in

set Si have the ranking ji � ji+1 � ... � jm � j1 � ... � ji−1. Since each alternative appears

exactly the same number of times in each position and f is Pareto e�cient, any alternative can

be selected as the winner of d∗; thus, without loss of generality, we may assume that the winner

is a. �e valuations are such that the voters in set Si for i ∈ [m − 2] ∪ {m} have value 1 for

alternative ji, while the voters in set Sm−1 have value 1/m for all alternatives.

• District d ∈ D\{d∗}: all voters rank alternative b �rst and then the other alternatives arbitrarily.

All voters have value 1 for b. Hence, b is the winner in all these districts.

�e optimal alternative is b, while the election winner is a. Since

SW(b|v) =
nd∗

m

(
1

m
+ 1

)
+ n− nd∗

≥ nd∗

m2
+ n− nd∗

and

SW(a|v) =
nd∗

m
· 1

m
=
nd∗

m2
,

the distortion is equal to

SW(b|v)

SW(a|v)
=

n∗d
m2 + n− nd∗

nd∗
m2

= 1 +m2

(
n

nd∗
− 1

)
.

�e proof follows by selecting nd∗ = mind∈D nd.
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Figure 1: Average distributed distortion from 1000 simulations as a function of the number of districts k with

random partitions of voters into districts.

5 An Experimental Demonstration

�us far, we have studied the worst-case e�ect of the partition of voters into districts on the distortion

of voting rules. In this section, we further showcase this phenomenon with indicative simulations, by

using real-world utility pro�les that are drawn from the Jester dataset [Goldberg et al., 2001], which

consists of ratings of 100 di�erent jokes in the interval [−10, 10] by approximately 70,000 users; this

dataset has been used in a plethora of previous papers, including the seminal work of Boutilier et al.
[2015]. Following their methodology, we build instances with a set of alternatives that consists of the

eight most-rated jokes. For various values of k, we execute 1000 independent simulations as follows:

we select a random set of 100 users among the ones that evaluated all eight alternatives, rescale their

ratings so that they are non-negative and satisfy the unit-sum assumption, and then divide them into

k districts.

For the partition into districts, we consider both random partitions as well as bad partitions in

terms of distortion. For the construction of the la�er, for each instance consisting of a speci�c value

of k and a set of voters, we create 100 random partitions of the voters into k districts, simulate the

general election (based on the voting rules we consider) and then keep the partition with maximum

distortion.

We compare the average distortion of four rules: Range Voting, Plurality, Borda, and Harmonic.

Borda and Harmonic are two well-known positional scoring rules de�ned by the scoring vectors (m−
1,m− 2, ..., 0) and (1, 1/2, ..., 1/m), respectively. According to these rules, each voter assigns points

to the alternatives based on the positions she ranks them, and the alternative with the most points is

the winner; Plurality can also be de�ned similarly by the scoring vector (1, 0, ..., 0).

Fig. 1 depicts the results of our simulations for unweighted and weighted districts when the par-

tition into districts is random and k ∈ {1, 5, 10, 15, 20, 25}. As one can observe, the behaviour of the

four voting rules is very similar in both cases, and it is evident that as the number of districts increases,

the distortion increases as well. For instance, the distortion of Plurality increased by 3.71% for k = 5
compared to k = 1 (i.e., when there are no districts) and by 6.44% for k = 25; these values are similar

for the other rules as well, although a bit lower. Table 3 contains the results of our simulations for

unweighted and weighted districts when the partition into districts is bad (in terms of the distortion)

and k ∈ {1, 2, 3, 4, 5}. As in the case of random districts, we can again observe that the distortion

increases as k increases, but now the di�erence between the cases with districts (k ≥ 2) and without

districts (k = 1) is more clear; the distortion is almost �ve times higher.
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unweighted weighted

k 1 2 3 4 5 1 2 3 4 5

Range Voting 1 4.82 4.51 4.50 4.60 1 4.46 4.96 5.14 5.14

Plurality 1.05 5.03 4.66 4.71 4.81 1.05 4.77 5.29 5.47 5.49

Borda 1.01 4.83 4.47 4.50 4.61 1.01 4.51 4.98 5.16 5.18

Harmonic 1.02 4.97 4.60 4.62 4.72 1.02 4.64 5.16 5.35 5.36

Table 3: Average distributed distortion from 1000 simulations with bad partitions of voters into districts.

6 Best-Case Symmetric Partitions via Districting

Motivated by the very bad worst-case distortion guarantees of voting rules due to the partition of the

voters into districts, in this section we turn our a�ention to a somewhat di�erent se�ing. We assume

that the k districts are not a priori de�ned, and instead we are free to decide the partition of the voters

into the districts so as to minimize their e�ect on the distortion of the underlying voting rule. We refer

to the process of partitioning the voters into k districts as k-districting.

6.1 Range Voting

We focus on symmetric districts and start our analysis with the question of whether it is possible to

de�ne the districts so that the optimal alternative (i.e., the one that maximizes the social welfare of the

voters) wins the general election when RV is used as the voting rule within the districts. Unfortunately,

as we show with our next theorem, this is not always possible. �e instances presented in the following

proof are such that the optimal alternative loses in all districts, under any partition of the voters into

k districts.

�eorem 6.1. For every k ≥ 2, there exists an instance such that no symmetric k-districting allows the
optimal alternative to win the district-based election when RV is the voting rule.

Proof. Let q ≥ 2 be a parameter, andM = {a1, ..., aq, b}. In the following, we will present di�erent

instances for di�erent values of k, and will use q as an even or odd number depending on our needs so

that the number of voters per district n/k is an integer.

For k = 2, let ε ∈
(

0, n
(n+3)(n+4

)
. Consider a general election with n = 3q voters and valuation

pro�le v such that for every i ∈ [q] there are three voters with value
n
n+3 − ε for alternative ai and

value
3

n+3 + ε for b; the value of these voters for any other alternative is zero. �e optimal alternative

is b, since

SW(ai|v) =
3n

n+ 3
− 3ε

for every i ∈ [q], and

SW(b|v) =
3n

n+ 3
+ nε.

We now claim that there exists no partition of the voters into two districts of size n/2 such that the

election winner is b. To this end, consider any set A of n/2 voters. By the de�nition of v, the welfare

of the voters in A for b is equal to
n
2

(
3

n+3 + ε
)

. However, since n/2 > q, there exists an i∗ ∈ [q] such

thatA includes at least two of the voters that positively value alternative ai∗ . Hence, the welfare of the

voters inA for ai∗ is at least 2
(

n
n+3 − ε

)
, which is strictly more than

n
2

(
3

n+3 + ε
)

by the de�nition of

ε. �is yields that b cannot win in any district consisting of n/2 voters, and thus cannot be the winner

of the election under any symmetric 2-districting.
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For k ≥ 3, let ε ∈
(

0, n
(n+k)(n+k−1)

)
. Consider a general election with n = (k − 1)q ≥ 2q voters

and valuation pro�le v such that for every i ∈ [q] there are k − 1 voters with value
n

n+k + ε for

alternative ai and value
k

n+k − ε for alternative b; the value of these voters for any other alternative is

zero. We have that

SW(ai|v) = (k − 1)

(
n

n+ k
+ ε

)
for every i ∈ [n], and

SW(b|v) = n

(
k

n+ k
− ε
)
.

By the de�nition of ε, b is clearly the optimal alternative. Now, consider any setA of n/k voters. �eir

welfare for b is by de�nition equal to
n

n+k−
nε
k , while their welfare for the a-type alternatives they rank

�rst is at least
n

n+k + ε. �erefore, b cannot win the election under any symmetric k-districting.

We continue the negative results by showing that the problem of deciding whether it is possible

to de�ne the districts such that the optimal alternative wins the district-based election with RV is NP-

complete. �e proofs of the next two theorems (which handle di�erent cases) follow by reductions

from a constrained version of Partition which requires partitioning a set of numbers into two sets of

equal size and sum. Formally,

c-Partition: Given a set of q positive integer numbers {x1, ..., xq}, �nd a partition of

them into two sets X and X such that |X| = |X| and

∑
i∈X xi =

∑
i∈X xi.

�is version of Partition is known to be NP-hard (see problem SP12 in [Garey and Johnson, 1979]).

Before we proceed with our hardness reductions below, we will transform the given c-Partition in-

stance slightly. In particular, we normalize the input numbers by dividing with their sum. Hence, in

what follows, we assume without loss of generality that the (now real) numbers {x1, ..., xq} sum up

to 1 and the goal of c-Partition is to split the numbers into two sets of equal size such that the sum

in each set is exactly 1/2; we also assume that each individual number is strictly less than 1/2, as

otherwise c-Partition is easy. Clearly, by the cardinality constraint of c-Partition, q ≥ 2 is an even

number.

�eorem 6.2. For n ≤ m, the problem of deciding whether there is a symmetric k-districting so that the
optimal alternative is the winner of the district-based election when RV is used as the voting rule within
the districts is NP-complete, for every k ≥ 2.

Proof. �e problem is obviously in NP: given a partition of the voters into k districts, we can check

whether the winner of the election is the optimal alternative in polynomial time. For the hardness, we

show a reduction from c-Partition.

Let ε < 1
2 mini∈[q] xi be an in�nitesimally small positive constant. We de�ne a district-based

election with a set M of m = kq + 1 alternatives and a set N of n = kq
2 voters. To simplify our

discussion, we enumerate the alternatives as

M = {α1, ..., αq, β1, ..., βq, γ1, ..., γ k−2
2
q, δ1, ..., δ k−2

2
q, θ}

and divide the set of voters into a set Λ = {λ1, ..., λq} consisting of q number-voters and a set Ξ =
{ξ1, ..., ξ k−2

2
q} consisting of

k−2
2 q dummy-voters. �e valuation pro�le v is such that

• For each i ∈ [q], number-voter λi has value 1/2− ε for αi, value 1/2 + ε−xi for βi, value xi for

θ, and zero value for any other alternative. Observe that due to the de�nition of ε, λi has strictly

more value for αi than for βi.
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• For each i ∈
[
k−2
2 q
]
, dummy-voter ξi has value 1/2 for γi, value 1/2 for δi, and zero value for

any other alternative.

We have

SW(αi|v) = 1/2− ε, for every i ∈ [q]

SW(βi|v) = 1/2 + ε− xi, for every i ∈ [q]

SW(γi|v) = 1/2, for every i ∈
[
k − 2

2
q

]
SW(γi|v) = 1/2, for every i ∈

[
k − 2

2
q

]
SW(θ|v) =

∑
i∈[q]

xi = 1.

�erefore, the optimal alternative is θ, and our goal is to partition the voters into k districts of size q/2
such that θ wins strictly more districts than any other alternative.

Assume that the given instance of c-Partition is a yes-instance and the two sets of numbers are

X and X such that |X| = |X| = q/2. �en, we partition the number-voters into two districts of size

q/2 such that the voters corresponding to numbers in X are all together in one of these districts and

the voters corresponding to numbers in X are all together in the other district. We also arbitrarily

partition the
k−2
2 q dummy-voters into the remaining k − 2 districts of size q/2. Now, observe that

θ wins both districts with number-voters since the welfare of the voters therein is exactly 1/2, while

the welfare for any other alternative is at most 1/2 − ε. At the same time, each district consisting of

dummy-voters has a di�erent winner. Hence, since θ wins two districts and any other alternative wins

at most one district, θ is the winner of the election as desired.

Conversely, assume that the given instance of c-Partition is a no-instance. �en, any partition of

the numbers {xi}i∈[q] into two sets of size q/2 leads to one set with sum with strictly less than 1/2.

�erefore, alternative θ cannot win more than one district, and thus is not a necessary winner; observe

that, due to the de�nition of ε, θ loses to the α-type alternatives if the welfare of the voters within a

district for her is strictly less than 1/2.

�e proof of �eorem 6.2 essentially implies that, in case n ≤ m, it is NP-hard to de�ne k ≥ 2
symmetric districts such that the winner of the district-based election has social welfare within a factor

strictly less than 2 of the optimal social welfare. In other words, computing a k-districting such that

the distributed distortion of RV is less than 2 is an intractable problem.

Next, we turn our a�ention to the more natural case n > m, and again show a hardness result

using a reduction similar to the one used for the proof of the above theorem, which however holds

only for k ≥ 5; we have been unable to resolve the complexity of the problem for k ∈ {2, 3, 4} in this

case.

�eorem 6.3. For n > m, the problem of deciding whether there is a symmetric k-districting so that the
optimal alternative is the winner of the district-based election when RV is used as the voting rule within
the districts is NP-complete, for every k ≥ 5.

Proof. For the hardness, we will again show a reduction from c-Partition. We distinguish between

the following two cases depending on the relation between the number of districts k and the cardinality

q of the set of numbers in the instance of c-Partition. Let ε ∈
(
0, 12 mini∈[q] xi

)
be an in�nitesimally

small positive constant.
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Case I: k ≤ 2q+ 2. We de�ne a district-based election with a setM of m = 2q+ 1 alternatives and

a setN of n = kq/2 voters; observe that k ≥ 5 implies that n > m. We enumerate the alternatives as

M = {α1, ..., α2q, θ} and divide the set of voters into a set Λ = {λ1, ..., λq} consisting of q number-

voters and a set Ξ = {ξ1, ..., ξ k−2
2
q} consisting of

k−2
2 q dummy-voters. We further divide the set of

dummy-voters into k − 2 sets of size q/2: Ξ = Ξ1 ∪ ... ∪ Ξk−2. �e valuation pro�le v is such that

• For each i ∈ [q], number-voter λi has value 1/2− ε for αi, value 1/2 + ε− xi for αq+i, value xi
for θ, and zero value for any other alternative. By the de�nition of ε, λi has strictly more value

for αi than for αq+i.

• For each i ∈ [k − 2], all dummy-voters in set Ξi have
1

2q+1 + δ for ai, and
1

2q+1 −
δ
2q for each

of the remaining 2q alternatives inM\ {ai}, where δ ∈
(

0, 2(1+2ε)
2q+1

)
is an arbitrarily small but

strictly positive constant.

We have

SW(αi|v) ≤ 1/2− ε+ (k − 2)
q

2
· 1

2q + 1
+ δ

(
q

2
− k − 3

4

)
, for every i ∈ [q]

SW(θ|v) = 1 + (k − 2)
q

2
· 1

2q + 1
− δ · k − 2

4
.

�erefore, by the range of possible values of δ, the optimal alternative is θ, and our goal is to partition

the voters into k districts of size q/2 such that θ wins strictly more districts than any other alternative.

Assume that the given instance of c-Partition is a yes-instance and the two sets of numbers are

X and X such that |X| = |X| = q/2. �en, we partition the number-voters into two districts of size

q/2 such that the voters corresponding to numbers in X are bundled together in one district and the

voters corresponding to numbers in X are bundled together in the other district. Moreover, for every

i ∈ [k− 2], we put all dummy-voters of set Ξi in the same district. Given this k-districting, alternative

θ wins both districts with number-voters since the welfare of the voters therein is exactly 1/2, while

the welfare for any other alternative is at most 1/2 − ε. �e winner of each of the remaining k − 2
districts is a di�erent alternative; in particular, the winner of the district containing the dummy-voters

of Ξi is αi, since all these voters have strictly more value for αi than any other alternative.

Conversely, assume that the given instance of c-Partition is a no-instance. �en, any partition of

the numbers {xi}i∈[q] into two sets of size q/2 leads to one set with sum with strictly less than 1/2.

Since all dummy-voters weakly prefer all other alternatives over θ, θ cannot win more than one district

(containing the number-voters corresponding to the numbers of the c-Partition instance that sum

up to strictly more than 1/2), and thus cannot become a necessary winner.

Case II: k > 2q + 2. We treat this case similarly to the previous one, but we also add k − 2q − 2
alternatives more so that we have an instance withm = k−1. �is way we are able to have a di�erent

winner for each district consisting of only dummy-voters in case the given instance of c-Partition is

a yes-instance. �e values of the dummy-voters are such that they have value
1
m + δ for their favorite

alternative and
1
m −

δ
m−1 for every other alternative, depending on the dummy-set Ξi they belong to.

As the proof of the reduction is similar to before, the details are omi�ed and le� as an exercise for the

reader.

6.2 Plurality Voting

In contrast to the above result for the optimal alternative and RV, we next show that we can always

�nd a symmetric k-districting so that the PV winner without districts can be made the winner of the
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district-based election when PV is used as the voting rule within the districts. Since the voting rule is

PV, we assume that the only knowledge which we can leverage in order to de�ne the districts is about

the favorite alternatives of the voters (i.e., for each voter, we know the alternative she approves).

�eorem 6.4. For any k ≥ 2, there always exists a symmetric k-districting that allows the winner of PV
without districts to win the district-based election with k districts, and this districting can be computed in
polynomial time.

Proof. Consider an arbitrary instance with set of alternativesM, set of votersN , and valuation pro�le

v, which induces the ordinal pro�le �v
. To simplify our discussion, we assume that n/k is an integer.

For every alternative j ∈M, letN (j) be the set of voters that rank j at the �rst position according to

�v
, and set n(j) = |N (j)|.
Now, we create k hypothetical districts such that each district consists of

n(j)
k voters from set

N (j) for every j ∈M. If all fractions
n(j)
k are integer numbers, then this clearly de�nes a partition of

the voters into symmetric districts and the winner of each district (and therefore of the district-based

election) is the PV winner without districts. In case this is not true however, in order to create a valid

partition we do the following: for each j ∈M we place bn(j)k c voters ofN (j) in the �rst dk2e districts

and dn(j)k e voters of N (j) in the remaining districts; this is obviously a valid partition. It is easy to

verify that the Plurality winner is the winner of at least dk2e districts and hence the winner of the

general election.

We conclude this section by showing that the above result for PV is essentially tight. �is follows

by the existence of instances where any partition of the voters into any number of districts yields

distortion for the general election with PV that is asymptotically equal to the distortion of PV without

districts.

�eorem 6.5. �ere exist instances where any symmetric k-districting yields distortion ddist(PV) =
Ω(m2).

Proof. Consider a district-based election with m alternativesM = {a1, ..., am}, n = m voters and

the following information about the preferences of the voters: voter i approves alternative ai. Since all

alternatives are approved by a single voter, no ma�er the partition of the voters into k ≥ 2 districts,

the winner of the general election can be any alternative. Let x = aw be the winner of the election,

and let y = ao be some other alternative with o 6= w. We de�ne the following valuation pro�le v for

the voters:

• Voter w has value
1
m for all alternatives;

• Voter o has value 1 for alternative y;

• Voter i 6∈ {w, o} has value
1
2 for alternatives ai and y.

�erefore, SW(x|v) = 1
m and SW(y|v) = 1

m + 1 + (m− 2)12 , and the distortion of PV is at least

1
m + 1 + (m− 2)12

1
m

= 1 +
m2

2
.

Observe that even if we have access to the whole valuation pro�le v, since the winner is selected to be

the alternative with the most approval votes and each alternative is approved by only one voter, there

is no way to de�ne districts and avoid the possibility of alternative x being elected as the winner.
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7 Conclusion and Possible Extensions

In this paper, we have initiated the study of the distortion of distributed voting. We showcased the e�ect

of districts on the social welfare both theoretically from a worst- and a best-case perspective, as well as

experimentally using real-world data. Even though we have painted an almost complete picture, our

work reveals many interesting avenues for future research. In terms of our results, possibly the most

obvious open question is whether we can strengthen the weak intractability results of �eorem 6.2 and

�eorem 6.3 using reductions from strongly NP-complete problems, and also extend �eorem 6.3 to

k ≥ 2 (instead of k ≥ 5).

An assumption we have made throughout the paper is that the voting rule used in the local elections

held within the districts is the same over all districts. However, this need not be the case, and di�erent

voting rules may be applied within di�erent districts. Real-world examples include the US presidential

elections where some states use a proportional voting rule instead of the Plurality Voting rule that is

used in all other states. Hence, an interesting direction would be to consider a generalization of our

se�ing and study the e�ect of combinations of di�erent voting rules to the distributed distortion of

district-based elections, and whether this e�ect can be diminished by carefully de�ning the districts.

Another assumption we have made is that the district-based election winner is selected to be the

alternative that gathers the largest weight over the districts, or in the case of equal weights, the one

that wins the largest number of local elections. While this is natural and well-motivated by real-

world examples, there are applications where the election winner is selected di�erently. For instance,

consider the Eurovision Song Contest
3
, where each participating country holds a local voting process

(consisting of a commi�ee vote and an Internet vote from the people of the country) and then assigns

points to the 10 most popular options, on a 1-12 scale (with 11 and 9 omi�ed). �e winner of the

competition is the participant with the most total points. Consequently, one could consider scenarios

where each district outputs a ranking over the alternatives (instead of a single alternative), and then

the winner is selected according to some positional scoring rule, like the Borda-like rule in the case of

the Eurovision song contest.

Moving away from the unconstrained normalized se�ing that we considered here, it would be very

interesting to analyze the e�ect of districts in the case of metric preferences [Anshelevich et al., 2018], a

se�ing that has received considerable a�ention in the recent related literature on the distortion of vot-

ing rules without districts [Abramowitz et al., 2019; Anshelevich and Postl, 2017; Feldman et al., 2016;

Goel et al., 2018, 2017; Gross et al., 2017; Munagala and Wang, 2019; Pierczynski and Skowron, 2019].

Other important extensions include se�ings in which the partitioning of voters into districts is further

constrained by natural factors such as geological locations [Lewenberg et al., 2017] or connectivity in

social networks [Lesser et al., 2017].
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