285 research outputs found

    Determination of quantum numbers for several excited charmed mesons observed in B- -> D*(+)pi(-) pi(-) decays

    Get PDF
    A four-body amplitude analysis of the B − → D * + π − π − decay is performed, where fractions and relative phases of the various resonances contributing to the decay are measured. Several quasi-model-independent analyses are performed aimed at searching for the presence of new states and establishing the quantum numbers of previously observed charmed meson resonances. In particular the resonance parameters and quantum numbers are determined for the D 1 ( 2420 ) , D 1 ( 2430 ) , D 0 ( 2550 ) , D ∗ 1 ( 2600 ) , D 2 ( 2740 ) and D ∗ 3 ( 2750 ) states. The mixing between the D 1 ( 2420 ) and D 1 ( 2430 ) resonances is studied and the mixing parameters are measured. The dataset corresponds to an integrated luminosity of 4.7     fb − 1 , collected in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV with the LHCb detector

    Updated measurement of decay-time-dependent CP asymmetries in D-0 -> K+ K- and D-0 -> pi(+)pi(-) decays

    Get PDF
    A search for decay-time-dependent charge-parity (CP) asymmetry in D0 \u2192 K+ K 12 and D0 \u2192 \u3c0+ \u3c0 12 decays is performed at the LHCb experiment using proton-proton collision data recorded at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb^ 121. The D0 mesons are required to originate from semileptonic decays of b hadrons, such that the charge of the muon identifies the flavor of the neutral D meson at production. The asymmetries in the effective decay widths of D0 and anti-D0 mesons are determined to be A_\u393(K+ K 12) = ( 124.3 \ub1 3.6 \ub1 0.5) 7 10^ 124 and A_\u393(\u3c0+ \u3c0 12) = (2.2 \ub1 7.0 \ub1 0.8) 7 10^ 124 , where the uncertainties are statistical and systematic, respectively. The results are consistent with CP symmetry and, when combined with previous LHCb results, yield A_\u393(K+ K 12) = ( 124.4 \ub1 2.3 \ub1 0.6) 7 10^ 124 and A_\u393(\u3c0+ \u3c0 12) = (2.5 \ub1 4.3 \ub1 0.7) 7 10^ 124

    Updated measurement of decay-time-dependent CP asymmetries in D-0 -> K+ K- and D-0 -> pi(+)pi(-) decays

    Get PDF
    A search for decay-time-dependent charge-parity (CP) asymmetry in D-0 -> K+ K- and D-0 -> pi(+)pi(-) eff decays is performed at the LHCb experiment using proton-proton collision data recorded at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb(-1). The D-0 mesons are required to originate from semileptonic decays of b hadrons, such that the charge of the muon identifies the flavor of the neutral D meson at production. The asymmetries in the effective decay widths of D-0 and (D) over bar (0) mesons are determined to be A(Gamma)(K+ K-) = (-4.3 +/- 3.6 +/- 0.5) x 10(-4) and A(Gamma) (K+ K- ) = (2.2 +/- 7.0 +/- 0.8) x 10(-4), where the uncertainties are statistical and systematic, respectively. The results are consistent with CP symmetry and, when combined with previous LHCb results, yield A(Gamma) (K+ K-) = (-4.4 +/- 2.3 +/- 0.6) x 10(-4) and A(Gamma) (pi(+)pi(-))= (2.5 +/- 4.3 +/- 0.7) x 10(-4)

    Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus.

    No full text
    The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated in mass mortalities of shellfish larvae causing significant economic losses to the shellfish industry. Recently, strain BAA-450, a coral pathogen, was demonstrated to be virulent towards larval Pacific oysters (Crassostrea gigas). However, it is unclear whether other coral-associated V. coralliilyticus strains can cause shellfish mortalities and if infections are influenced by temperature. This study compared dose dependence, temperature impact, and gross pathology of four V. coralliilyticus strains (BAA-450, OCN008, OCN014 and RE98) on larval C. gigas raised at 23°C and 27°C, and evaluated whether select virulence factors are required for shellfish infections as they are for corals. All strains were infectious to larval oysters in a dose-dependent manner with OCN014 being the most pathogenic and BAA-450 being the least. At 27°C, higher larval mortalities (p < 0.05) were observed for all V. coralliilyticus strains, ranging from 38.8-93.7%. Gross pathological changes to the velum and cilia occurred in diseased larvae, but there were no distinguishable differences between oysters exposed to different V. coralliilyticus strains or temperatures. Additionally, in OCN008, the predicted transcriptional regulator ToxR and the outer membrane protein OmpU were important for coral and oyster disease, while mannose sensitive hemagglutinin type IV pili were required only for coral infection. This study demonstrated that multiple coral pathogens can infect oyster larvae in a temperature-dependent manner and identified virulence factors required for infection of both hosts

    Sablefish (Anoplopoma fimbra Pallas, 1814) plasma biochemistry and hematology reference intervals including blood cell morphology.

    No full text
    Plasma biochemistry and hematology reference intervals are integral health assessment tools in all medical fields, including aquatic animal health. As sablefish (Anoplopoma fimbria) are becoming aquaculturally and economically more important, this manuscript provides essential reference intervals (RI) for their plasma biochemistry and hematology along with reference photomicrographs of blood cells in healthy, fasted sablefish. Blood cell morphology can differ between fish species. In addition, blood cell counts and blood chemistry can vary between fish species, demographics, water conditions, seasons, diets, and culture systems, which precludes the use of RI's from other fish species. For this study, blood was collected for plasma biochemistry and hematology analysis between June 20 and July 18, 2019, from healthy, yearling sablefish, hatched and reared in captivity on a commercial diet. Overnight fast of 16-18 hours did not sufficiently reduce lipids in the blood, which led to visible lipemia and frequent rupture of blood cells during analysis. Therefore, sablefish should be fasted for 24 to 36 hours before blood is collected to reduce hematology artifacts or possible reagent interference in plasma biochemistry analysis. Lymphocytes were the most dominant leukocytes (98%), while eosinophils were rare, and basophils were not detected in sablefish. Neutrophils were very large cells with Döhle bodies. In mammals and avian species, Döhle bodies are usually signs of toxic change from inflammation, but no such association was found in these fish. In conclusion, lipemia can interfere with sablefish blood analysis, and available removal methods should be evaluated as fasting for up to 36 h might not always be feasible. Also, more studies are required to establish RI for different developmental stages and rearing conditions

    Percent mortality of oyster larvae 72 h post-inoculation with <i>V</i>. <i>coralliilyticus</i> strains.

    No full text
    <p>Larvae exposed to varying concentrations of <i>V</i>. <i>coralliilyticus</i> strain (A) RE98, (B) OCN008, (C) OCN014, (D) BAA-450, (E) <i>Vibrio</i> sp. strain HMSC5, and (F) <i>V</i>. <i>tasmaniensis</i> strain LGP32. Light gray bars represent the mean counts from larvae incubated at 23°C; dark gray bars represent larvae at 27°C. Control wells were inoculated with sterilized seawater. An asterisk (*) indicates that larval counts are significantly different from the controls (2-way ANOVA, <i>p</i> < 0.05, <i>n</i> = 12). A dagger (†) indicates the larval counts are significantly different for experiments at 23°C versus 27°C (2-way ANOVA, <i>p</i> < 0.05, <i>n</i> = 12).</p

    Factors affecting infection of corals and larval oysters by <i>Vibrio coralliilyticus</i>

    No full text
    <div><p>The bacterium <i>Vibrio coralliilyticus</i> can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of <i>V</i>. <i>coralliilyticus</i> (formally identified as <i>V</i>. <i>tubiashii</i>) have been implicated in mass mortalities of shellfish larvae causing significant economic losses to the shellfish industry. Recently, strain BAA-450, a coral pathogen, was demonstrated to be virulent towards larval Pacific oysters (<i>Crassostrea gigas</i>). However, it is unclear whether other coral-associated <i>V</i>. <i>coralliilyticus</i> strains can cause shellfish mortalities and if infections are influenced by temperature. This study compared dose dependence, temperature impact, and gross pathology of four <i>V</i>. <i>coralliilyticus</i> strains (BAA-450, OCN008, OCN014 and RE98) on larval <i>C</i>. <i>gigas</i> raised at 23°C and 27°C, and evaluated whether select virulence factors are required for shellfish infections as they are for corals. All strains were infectious to larval oysters in a dose-dependent manner with OCN014 being the most pathogenic and BAA-450 being the least. At 27°C, higher larval mortalities (<i>p</i> < 0.05) were observed for all <i>V</i>. <i>coralliilyticus</i> strains, ranging from 38.8−93.7%. Gross pathological changes to the velum and cilia occurred in diseased larvae, but there were no distinguishable differences between oysters exposed to different <i>V</i>. <i>coralliilyticus</i> strains or temperatures. Additionally, in OCN008, the predicted transcriptional regulator ToxR and the outer membrane protein OmpU were important for coral and oyster disease, while mannose sensitive hemagglutinin type IV pili were required only for coral infection. This study demonstrated that multiple coral pathogens can infect oyster larvae in a temperature-dependent manner and identified virulence factors required for infection of both hosts.</p></div
    • …
    corecore