14,409 research outputs found

    Anisotropy, phonon modes, and lattice anharmonicity from dielectric function tensor analysis of monoclinic cadmium tungstate

    Get PDF
    We determine the frequency dependence of four independent CdWO4_4 Cartesian dielectric function tensor elements by generalized spectroscopic ellipsometry within mid-infrared and far-infrared spectral regions. Single crystal surfaces cut under different angles from a bulk crystal, (010) and (001), are investigated. From the spectral dependencies of the dielectric function tensor and its inverse we determine all long wavelength active transverse and longitudinal optic phonon modes with AuA_u and BuB_u symmetry as well as their eigenvectors within the monoclinic lattice. We thereby demonstrate that such information can be obtained completely without physical model line shape analysis in materials with monoclinic symmetry. We then augment the effect of lattice anharmonicity onto our recently described dielectric function tensor model approach for materials with monoclinic and triclinic crystal symmetries [Phys. Rev. B, 125209 (2016)], and we obtain excellent match between all measured and modeled dielectric function tensor elements. All phonon mode frequency and broadening parameters are determined in our model approach. We also perform density functional theory phonon mode calculations, and we compare our results obtained from theory, from direct dielectric function tensor analysis, and from model lineshape analysis, and we find excellent agreement between all approaches. We also discuss and present static and above reststrahlen spectral range dielectric constants. Our data for CdWO4_4 are in excellent agreement with a recently proposed generalization of the Lyddane-Sachs-Teller relation for materials with low crystal symmetry [Phys. Rev. Lett. 117, 215502 (2016)].Comment: arXiv admin note: text overlap with arXiv:1512.0859

    Anisotropy and phonon modes from analysis of the dielectric function tensor and inverse dielectric function tensor of monoclinic yttrium orthosilicate

    Get PDF
    We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2_2SiO5_5 using generalized spectroscopic ellipsometry from 40-1200 cm1^{-1}. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017)], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain excellent match between all measured and model calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au_{\mathrm{u}} and 22 Bu_{\mathrm{u}} symmetry long wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au_{\mathrm{u}} symmetry and 22 Bu_{\mathrm{u}} transverse and longitudinal optical mode parameters and their orientation within the monoclincic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys. Rev. Lett. 117, 215502 (2016)]

    Preprototype vapor compression distillation subsystem

    Get PDF
    A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements

    Electron effective mass in Al0.72_{0.72}Ga0.28_{0.28}N alloys determined by mid-infrared optical Hall effect

    Full text link
    The effective electron mass parameter in Si-doped Al0.72_{0.72}Ga0.28_{0.28}N is determined to be m=(0.336±0.020)m0m^\ast=(0.336\pm0.020)\,m_0 from mid-infrared optical Hall effect measurements. No significant anisotropy of the effective electron mass parameter is found supporting theoretical predictions. Assuming a linear change of the effective electron mass with the Al content in AlGaN alloys and m=0.232m0m^\ast=0.232\,m_0 for GaN, an average effective electron mass of m=0.376m0m^\ast=0.376\,m_0 can be extrapolated for AlN. The analysis of mid-infrared spectroscopic ellipsometry measurements further confirms the two phonon mode behavior of the E1_1(TO) and one phonon mode behavior of the A1_1(LO) phonon mode in high-Al-content AlGaN alloys as seen in previous Raman scattering studies

    Near--K-edge double and triple detachment of the F- negative ion: observation of direct two-electron ejection by a single photon

    Full text link
    Double and triple detachment of the F-(1s2 2s2 2p6) negative ion by a single photon have been investigated in the photon energy range 660 to 1000 eV. The experimental data provide unambiguous evidence for the dominant role of direct photo-double-detachment with a subsequent single-Auger process in the reaction channel leading to F2+ product ions. Absolute cross sections were determined for the direct removal of a (1s+2p) pair of electrons from F- by the absorption of a single photon

    Preliminary report on sand-streaming in Agadez and Tahoua Departments, Republic of Niger

    Get PDF
    There are no author-identified significant results in this report
    corecore