21 research outputs found

    Seg1 Controls Eisosome Assembly and Shape

    Get PDF
    Eisosomes are stable domains at the plasma membrane of the budding yeast Saccharomyces cerevisiae and have been proposed to function in endocytosis. Eisosomes are composed of two main cytoplasmic proteins, Pil1 and Lsp1, that form a scaffold around furrow-like plasma membrane invaginations. We show here that the poorly characterized eisosome protein Seg1/Ymr086w is important for eisosome biogenesis and architecture. Seg1 was required for efficient incorporation of Pil1 into eisosomes and the generation of normal plasma membrane furrows. Seg1 preceded Pil1 during eisosome formation and established a platform for the assembly of other eisosome components. This platform was further shaped and stabilized upon the arrival of Pil1 and Lsp1. Moreover, Seg1 abundance controlled the shape of eisosomes by determining their length. Similarly, the Schizosaccharomyces pombe Seg1-like protein Sle1 was necessary to generate the filamentous eisosomes present in fission yeast. The function of Seg1 in the stepwise biogenesis of eisosomes reveals striking architectural similarities between eisosomes in yeast and caveolae in mammals

    Lipid Droplets Embedded in a Model Cell Membrane Create a Phospholipid Diffusion Barrier

    Get PDF
    Lipid droplets (LDs) are ubiquitous, cytoplasmic fat storage organelles that originate from the endoplasmic reticulum (ER) membrane. They are composed of a core of neutral lipids surrounded by a phospholipid monolayer. Proteins embedded into this monolayer membrane adopt a monotopic topology and are crucial for regulated lipid storage and consumption. A key question is, which collective properties of protein-intrinsic and lipid-mediated features determine spatio-temporal protein partitioning between phospholipid bilayer and LD monolayer membranes. To address this question, a freestanding phospholipid bilayer with physiological lipidic composition is produced using microfluidics and micrometer-sized LDs are dispersed around the bilayer that spontaneously insert into the bilayer. Using confocal microscopy, the 3D geometry of the reconstituted LDs is determined with high spatial resolution. The micrometer-sized bilayer-embedded LDs present a characteristic lens shape that obeys predictions from equilibrium wetting theory. Fluorescence recovery after photobleaching measurements reveals the existence of a phospholipid diffusion barrier at the monolayer–bilayer interface. Coarse-grained molecular dynamics simulation reveals lipid specific density distributions along the pore rim, which may rationalize the diffusion barrier. The lipid diffusion barrier between the LD covering monolayer and the bilayer may be a key phenomenon influencing protein partitioning between the ER membrane and LDs in living cells

    Quantitative Proteomics and Differential Protein Abundance Analysis after the Depletion of PEX3 from Human Cells Identifies Additional Aspects of Protein Targeting to the ER

    Get PDF
    Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of around 10,000 different soluble and membrane proteins in humans. It involves the co- or post translational targeting of precursor polypeptides to the ER, and their subsequent membrane insertion or translocation. So far, three pathways for the ER targeting of precursor polypeptides and four pathways for the ER targeting of mRNAs have been described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the pre cursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting vari ous peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in the targeting and, putatively, insertion of monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins, or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose as to whether this pathway may play a more general role in ER protein targeting, i.e., whether it represents a fourth pathway for the ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach which involved the label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells, as well as differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3 clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices belonging to the secretory pathway were also negatively affected by PEX3 deficiency, which may suggest compromised collagen biogenesis as a hitherto-unknown contributor to organ failures in the respective Zellweger patients

    Shotgun lipidomics of liver and brain tissue of Alzheimer's disease model mice treated with acitretin

    Get PDF
    Alzheimer’s disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-ÎČ (AÎČ). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris, increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents AÎČ-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients

    Regulatory feedback cycle of the insulin-degrading enzyme and the amyloid precursor protein intracellular domain: Implications for Alzheimer's disease

    Get PDF
    One of the major pathological hallmarks of AlzheimerÂŽs disease (AD) is an accumulation of amyloid-ÎČ (AÎČ) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between AÎČ-production and -degradation is necessary to prevent pathological AÎČ-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major AÎČ-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and AÎČ-degradation is linked in a regulatory cycle to achieve this balance. In absence of AÎČ-production caused by APP or Presenilin deficiency, IDE-mediated AÎČ-degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the Îł-secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH-SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between AÎČ-production and AÎČ-degradation forming a regulatory cycle in which AICD promotes AÎČ-degradation via IDE and IDE itself limits its own production by degrading AICD

    Seg1 controls eisosome assembly and shape

    Get PDF
    Eisosomes are stable domains at the plasma membrane of the budding yeast Saccharomyces cerevisiae and have been proposed to function in endocytosis. Eisosomes are composed of two main cytoplasmic proteins, Pil1 and Lsp1, that form a scaffold around furrow-like plasma membrane invaginations. We show here that the poorly characterized eisosome protein Seg1/Ymr086w is important for eisosome biogenesis and architecture. Seg1 was required for efficient incorporation of Pil1 into eisosomes and the generation of normal plasma membrane furrows. Seg1 preceded Pil1 during eisosome formation and established a platform for the assembly of other eisosome components. This platform was further shaped and stabilized upon the arrival of Pil1 and Lsp1. Moreover, Seg1 abundance controlled the shape of eisosomes by determining their length. Similarly, the Schizosaccharomyces pombe Seg1-like protein Sle1 was necessary to generate the filamentous eisosomes present in fission yeast. The function of Seg1 in the stepwise biogenesis of eisosomes reveals striking architectural similarities between eisosomes in yeast and caveolae in mammals

    Quantitative proteomics and differential protein abundance analysis after the depletion of PEX3 from human cells identifies additional aspects of protein targeting to the ER

    Get PDF
    Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of around 10,000 different soluble and membrane proteins in humans. It involves the co-or post-translational targeting of precursor polypeptides to the ER, and their subsequent membrane insertion or translocation. So far, three pathways for the ER targeting of precursor polypeptides and four pathways for the ER targeting of mRNAs have been described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting vari-ous peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in the targeting and, putatively, insertion of monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins, or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose as to whether this pathway may play a more general role in ER protein targeting, i.e., whether it represents a fourth pathway for the ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach which involved the label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells, as well as differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3 clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices belonging to the secretory pathway were also negatively affected by PEX3 deficiency, which may suggest compromised collagen biogenesis as a hitherto-unknown contributor to organ failures in the respective Zellweger patients

    Overexpression of Ist2 traps the perinuclear ER at the PM.

    No full text
    <p>(A–C) Electron micrographs of log phase <i>pTEF1-IST2</i> cells. (A and B) Cells were high pressure frozen, freeze substituted and Epon embedded. (B) Arrowheads indicate the association of cortical ER with the PM. (C) Immuno-gold labeling of chemically fixed cells using anti-Ist2 antibodies. Organelles and membranes are labeled (PM, plasma membrane; CW, cell wall; ER, endoplasmic reticulum; N, nucleus; NP, nuclear pore). The white bar corresponds to 1 ”m and the black bar to 200 nm. (D) Association of nuclei analyzed by CLS microscopy of <i>ist2Δ</i>, WT, and <i>pTEF1-IST2</i> cells expressing GFP-HDEL (n = 39, 38, 55), Sec63-GFP (n = 46, 60, 48), GFP-Ubc6 (n = 66, 54, 50), and GFP-Scs2 (n = 52, 74, 95). Class 1 cells have the nucleus in the centre without any contact to the periphery (white), class 2 cells have the nucleus in contact with the periphery (grey), and class 3 cells have a deformed nucleus that aligns with the periphery (black). Quantification was performed with blinded data.</p

    Yeast Ist2 Recruits the Endoplasmic Reticulum to the Plasma Membrane and Creates a Ribosome-Free Membrane Microcompartment

    Get PDF
    <div><p>The endoplasmic reticulum (ER) forms contacts with the plasma membrane. These contacts are known to function in non-vesicular lipid transport and signaling. Ist2 resides in specific domains of the ER in <em>Saccharomyces cerevisiae</em> where it binds phosphoinositide lipids at the cytosolic face of the plasma membrane. Here, we report that Ist2 recruits domains of the yeast ER to the plasma membrane. Ist2 determines the amount of cortical ER present and the distance between the ER and the plasma membrane. Deletion of <em>IST2</em> resulted in an increased distance between ER and plasma membrane and allowed access of ribosomes to the space between the two membranes. Cells that overexpress Ist2 showed an association of the nucleus with the plasma membrane. The morphology of the ER and yeast growth were sensitive to the abundance of Ist2. Moreover, Ist2-dependent effects on cytosolic pH and genetic interactions link Ist2 to the activity of the H<sup>+</sup> pump Pma1 in the plasma membrane during cellular adaptation to the growth phase of the culture. Consistently we found a partial colocalization of Ist2-containing cortical ER and Pma1-containing domains of the plasma membrane. Hence Ist2 may be critically positioned in domains that couple functions of the ER and the plasma membrane.</p> </div
    corecore