2 research outputs found

    Activity-Based Protein Profiling Reveals Dynamic Substrate-Specific Cellulase Secretion by Saprotrophic Basidiomycetes

    Get PDF
    BACKGROUND: Fungal saccharification of lignocellulosic biomass occurs concurrently with the secretion of a diverse collection of proteins, together functioning as a catalytic system to liberate soluble sugars from insoluble composite biomaterials. How different fungi respond to different substrates is of fundamental interest to the developing biomass saccharification industry. Among the cornerstones of fungal enzyme systems are the highly expressed cellulases (endo-β-glucanases and cellobiohydrolases). Recently, a cyclophellitol-derived activity-based probe (ABP-Cel) was shown to be a highly sensitive tool for the detection and identification of cellulases. RESULTS: Here we show that ABP-Cel enables endo-β-glucanase profiling in diverse fungal secretomes. In combination with established ABPs for β-xylanases and β-d-glucosidases, we collected multiplexed in-gel fluorescence activity-based protein profiles of 240 secretomes collected over ten days from biological replicates of ten different basidiomycete fungi grown on maltose, wheat straw, or aspen pulp. Our results reveal the remarkable dynamics and unique enzyme fingerprints associated with each species substrate combination. Chemical proteomic analysis identifies significant arsenals of cellulases secreted by each fungal species during growth on lignocellulosic biomass. Recombinant production and characterization of a collection of probe-reactive enzymes from GH5, GH10, and GH12 confirm that ABP-Cel shows broad selectivity towards enzymes with endo-β-glucanase activity. CONCLUSION: Using small-volume samples with minimal sample preparation, the results presented here demonstrate the ready accessibility of sensitive direct evidence for fungal enzyme secretion during early stages of growth on complex lignocellulosic substrates. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-022-02107-z

    An overview of activity-based probes for glycosidases

    Get PDF
    As the scope of modern genomics technologies increases, so does the need for informative chemical tools to study functional biology. Activity-based probes (ABPs) provide a powerful suite of reagents to probe the biochemistry of living organisms. These probes, featuring a specificity motif, a reactive chemical group and a reporter tag, are opening-up large swathes of protein chemistry to investigation in vitro, as well as in cellular extracts, cells and living organisms in vivo. Glycoside hydrolases, by virtue of their prominent biological and applied roles, provide a broad canvas on which ABPs may illustrate their functions. Here we provide an overview of glycosidase ABP mechanisms, and review recent ABP work in the glycoside hydrolase field, encompassing their use in medical diagnosis, their application for generating chemical genetic disease models, their fine-tuning through conformational and reactivity insight, their use for high-throughput inhibitor discovery, and their deployment for enzyme discovery and dynamic characterization.Medical BiochemistryBio-organic Synthesi
    corecore