424 research outputs found

    Incidental radiological finding of a renal tumour leading to the diagnosis of Birt-Hogg-Dubé syndrome

    Get PDF
    Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition characterised by benign tumours of the hair follicle, renal cancer, pulmonary cysts and spontaneous pneumothorax. We report the diagnosis of a BHD syndrome achieved after incidental radiological finding of a renal tumour in a 24-year old man. The patient also displayed recurrent pneumothoraces and showed to have cysts in the basis of both lungs. The association of recurrent pneumothoraces and renal neoplastic disease should alert for the possible presence of this syndrome

    Julius Lippert, Socialgeschichte Böhmens in vorhussitischer Zeit

    Get PDF
    n/

    Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma

    Get PDF
    Background: Immune markers in the peripheral blood of melanoma patients could provide prognostic information. However, there is currently no consensus on which circulating cell types have more clinical impact. We therefore evaluated myeloid-derived suppressor cells (MDSC), dendritic cells (DC), cytotoxic T-cells and regulatory T-cells (Treg) in a series of blood samples of melanoma patients in different stages of disease. Methods: Flow cytometry was performed on peripheral blood mononuclear cells of 69 stage I to IV melanoma patients with a median follow-up of 39 months after diagnosis to measure the percentage of monocytic MDSCs (mMDSCs), polymorphonuclear MDSCs (pmnMDSCs), myeloid DCs (mDCs), plasmacytoid DCs (pDCs), cytotoxic T-cells and Tregs. We also assessed the expression of PD-L1 and CTLA-4 in cytotoxic T-cells and Tregs respectively. The impact of cell frequencies on prognosis was tested with multivariate Cox regression modelling. Results: Circulating pDC levels were decreased in patients with advanced (P = 0.001) or active (P = 0.002) disease. Low pDC levels conferred an independent negative impact on overall (P = 0.025) and progression-free survival (P = 0.036). Even before relapse, a decrease in pDC levels was observed (P = 0.002, correlation coefficient 0.898). High levels of circulating MDSCs (>4.13%) have an independent negative prognostic impact on OS (P = 0.012). MDSC levels were associated with decreased CD3+ (P < 0.001) and CD3 + CD8+ (P = 0.017) T-cell levels. Conversely, patients with high MDSC levels had more PD-L1+ T-cells (P = 0.033) and more CTLA-4 expression by Tregs (P = 0.003). pDCs and MDSCs were inversely correlated (P = 0.004). The impact of pDC levels on prognosis and prediction of the presence of systemic disease was stronger than that of MDSC levels. Conclusion: We demonstrated that circulating pDC and MDSC levels are inversely correlated but have an independent prognostic value in melanoma patients. These cell types represent a single immunologic system and should be evaluated together. Both are key players in the immunological climate in melanoma patients, as they are correlated with circulating cytotoxic and regulatory T-cells. Circulating pDC and MDSC levels should be considered in future immunoprofiling efforts as they could impact disease management

    Low coherence digital holography microscopy based on the Lorenz-Mie scattering model

    Get PDF
    We demonstrate the use of low spatial and temporal coherence holography microscopy, based on the Lorenz-Mie model, using the standard tungsten-halogen lamp present in an inverted microscope. An optical model is put forward to incorporate the effect of spectral width and different incidence angles of the incident light determined by the aperture at the back focal plane of the condenser lens. The model is validated for 899 nm diameter polystyrene microspheres in glycerol, giving a resolution of 0.4% for the index of refraction and 2.2% for the diameter of the particles

    Nature of the spin dynamics and 1/3 magnetization plateau in azurite

    Full text link
    We present a specific heat and inelastic neutron scattering study in magnetic fields up into the 1/3 magnetization plateau phase of the diamond chain compound azurite Cu3_3(CO3_3)2_2(OH)2_2. We establish that the magnetization plateau is a dimer-monomer state, {\it i.e.}, consisting of a chain of S=1/2S = 1/2 monomers, which are separated by S=0S = 0 dimers on the diamond chain backbone. The effective spin couplings Jmono/kB=10.1(2)J_{mono}/k_B = 10.1(2) K and Jdimer/kB=1.8(1)J_{dimer}/k_B = 1.8(1) K are derived from the monomer and dimer dispersions. They are associated to microscopic couplings J1/kB=1(2)J_1/k_B = 1(2) K, J2/kB=55(5)J_2/k_B = 55(5) K and a ferromagnetic J3/kB=20(5)J_3/k_B = -20(5) K, possibly as result of dz2d_{z^2} orbitals in the Cu-O bonds providing the superexchange pathways.Comment: 5 pages, 4 figure
    corecore