1,818 research outputs found

    Recent advances and open challenges in percolation

    Full text link
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation

    Watersheds are Schramm-Loewner Evolution curves

    Full text link
    We show that in the continuum limit watersheds dividing drainage basins are Schramm-Loewner Evolution (SLE) curves, being described by one single parameter κ\kappa. Several numerical evaluations are applied to ascertain this. All calculations are consistent with SLEκ_\kappa, with κ=1.734±0.005\kappa=1.734\pm0.005, being the only known physical example of an SLE with κ<2\kappa<2. This lies outside the well-known duality conjecture, bringing up new questions regarding the existence and reversibility of dual models. Furthermore it constitutes a strong indication for conformal invariance in random landscapes and suggests that watersheds likely correspond to a logarithmic Conformal Field Theory (CFT) with central charge c≈−7/2c\approx-7/2.Comment: 5 pages and 4 figure

    Electrically Switchable Photonic Molecule Laser

    Full text link
    We have studied the coherent intercavity coupling of the evanescent fields of the whispering gallery modes of two terahertz quantum-cascade lasers implemented as microdisk cavities. The electrically pumped single-mode operating microcavities allow to electrically control the coherent mode coupling for proximity distances of the cavities up to 30-40 \mu\m. The optical emission of the strongest coupled photonic molecule can be perfectly switched by the electrical modulation of only one of the coupled microdisks. The threshold characteristics of the strongest coupled photonic molecule demonstrates the linear dependence of the gain of a quantum-cascade laser on the applied electric field.Comment: 4 pages, 4 figure

    Quaternary TDM-PAM as upgrade path of access PON beyond 10Gb/s

    Get PDF
    A 20 Gb/s quaternary TDM-PAM passive optical network with chirped and non-linear optical transmitters is experimentally demonstrated. The migration from legacy TDM-PONs and the implications of using available 10 Gb/s components are analyzed. We show that a loss budget of 27.3 dB is compatible together with a packet power ratio of 10 dB between loud and soft optical network units. (c) 2012 Optical Society of Americ

    Recent advances and open challenges in percolation

    Get PDF
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation

    Subsurface life can modify volatile cycling on a planetary scale

    Get PDF
    The past decade of environmental microbiology has revealed that subsurface environments, both marine and continental, harbor one of the largest ecosystems of our planet, with diversity and biomass rivaling those of the surface. In addition, subsurface life has been recently shown to contribute significantly to the planet’s biogeochemistry, with microbial activity potentially playing an important role in controlling the flux and composition of volatiles recycled between the Earth’s surface and interior, which has broad implications for the search for life beyond our planet. Current efforts to discover extraterrestrial life are focused on planetary bodies with largely inhospitable surfaces, such as Mars, Venus, Europa, Titan, and Enceladus. In these locations, subsurface environments might provide niches of habitability, making the study of deep microbial life a priority for future astrobiological missions. Understanding how volatile elements are exchanged between planetary surfaces and interiors and the role of a subsurface biosphere in altering their composition and flux might provide a tractable target for defining planetary habitability and the detection of subsurface life forms.Fil: Giovanelli, D.. Università degli Studi di Napoli Federico II; Italia. Tokyo Institute of Technology; Japón. Rutgers University; Estados Unidos. Consiglio Nazionale delle Ricerche; Italia. Woods Hole Oceanographic Institution; Estados UnidosFil: Barry, P. H.. Woods Hole Oceanographic Institution; Estados UnidosFil: Bekaert, D. V.. Woods Hole Oceanographic Institution; Estados UnidosFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Cordone, A.. Università degli Studi di Napoli Federico II; ItaliaFil: Covone, G.. Università degli Studi di Napoli Federico II; Italia. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Jessen, G.. Universidad Austral de Chile; ChileFil: Lloyd, K.. University of Tennessee; Estados UnidosFil: de Moor, J. M.. Universidad Nacional; Costa RicaFil: Morrison, S. M.. Carnegie Institution For Science; Estados UnidosFil: Schrenk, M. O.. Michigan State University; Estados UnidosFil: Vitale Brovarone, A.. Alma Mater Studiorum Universit`a Di Bologna; Italia. Sorbonne University; Francia. Museum National d’Histoire Naturelle; Franci

    Impacts of deep-sea mining on microbial ecosystem services

    Get PDF
    © 2020 The Authors. Limnology and Oceanography published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. Interest in extracting mineral resources from the seafloor through deep-sea mining has accelerated in the past decade, driven by consumer demand for various metals like zinc, cobalt, and rare earth elements. While there are ongoing studies evaluating potential environmental impacts of deep-sea mining activities, these focus primarily on impacts to animal biodiversity. The microscopic spectrum of seafloor life and the services that this life provides in the deep sea are rarely considered explicitly. In April 2018, scientists met to define the microbial ecosystem services that should be considered when assessing potential impacts of deep-sea mining, and to provide recommendations for how to evaluate and safeguard these services. Here, we indicate that the potential impacts of mining on microbial ecosystem services in the deep sea vary substantially, from minimal expected impact to loss of services that cannot be remedied by protected area offsets. For example, we (1) describe potential major losses of microbial ecosystem services at active hydrothermal vent habitats impacted by mining, (2) speculate that there could be major ecosystem service degradation at inactive massive sulfide deposits without extensive mitigation efforts, (3) suggest minor impacts to carbon sequestration within manganese nodule fields coupled with potentially important impacts to primary production capacity, and (4) surmise that assessment of impacts to microbial ecosystem services at seamounts with ferromanganese crusts is too poorly understood to be definitive. We conclude by recommending that baseline assessments of microbial diversity, biomass, and, importantly, biogeochemical function need to be considered in environmental impact assessments of deep-sea mining

    Evidence of protective effects of recombinant ADAMTS13 in a humanized model of sickle cell disease

    Get PDF
    Sickle cell disease (SCD) is an inherited red blood cell disorder that occurs worldwide. Acute vaso-occlusive crisis is the main cause of hospitalization in patients with SCD. There is growing evidence that inflammatory vasculopathy plays a key role in both acute and chronic SCD-related clinical manifestations. In a humanized mouse model of SCD, we found an increase of von Willebrand factor activity and a reduction in the ratio of a disintegrin and metalloproteinase with thrombospondin type 1 motif, number 13 (ADAMTS13) to von Willebrand factor activity similar to that observed in the human counterpart. Recombinant ADAMTS13 was administered to humanized SCD mice before they were subjected to hypoxia/reoxygenation (H/R) stress as a model of vaso-occlusive crisis. In SCD mice, recombinant ADAMTS13 reduced H/R-induced hemolysis and systemic and local inflammation in lungs and kidneys. It also diminished H/R-induced worsening of inflammatory vasculopathy, reducing local nitric oxidase synthase expression. Collectively, our data provide for the firsttime evidence that pharmacological treatment with recombinant ADAMTS13 (TAK-755) diminished H/R-induced sickle cell-related organ damage. Thus, recombinant ADAMTS13 might be considered as a potential effective disease-modifying treatment option for sickle cell-related acute events

    First Observation of the Σc∗+\Sigma_{c}^{*+} Baryon and a New Measurement of the Σc+\Sigma_{c}^{+} Mass

    Full text link
    Using data recorded with the CLEO II and CLEO II.V detector configurations at the Cornell Electron Storage Rings, we report the first observation and mass measurement of the Σc∗+\Sigma_c^{*+} charmed baryon, and an updated measurement of the mass of the Σc+\Sigma_c^+ baryon. We find M(Σc∗+)−M(Λc+)M(\Sigma_c^{*+})-M(\Lambda_c^+)= 231.0 +- 1.1 +- 2.0 MeV, and M(Σc+)−M(Λc+)M(\Sigma_c^{+})-M(\Lambda_c^+)= 166.4 +- 0.2 +- 0.3 MeV, where the errors are statistical and systematic respectively.Comment: 8 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    • …
    corecore