3,105 research outputs found

    Codeless GPS Applications to Multi-Path: CGAMP

    Get PDF
    Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection

    Antigen-Presenting Cells in Essential Fatty Acid—Deficient Murine Epidermis: Keratinocytes Bearing Class II (Ia) Antigens May Potentiate the Accessory Cell Function of Langerhans Cells

    Get PDF
    Essential fatty acid deficiency (EFAD) is a useful model for studying the role of (n-6) fatty acid metabolism in normal physiology. Because cutaneous manifestations are among the earliest signs of EFAD and because abnormalities in the distribution and function of tissue macrophages have been documented in EFAD rodents, we studied the distribution and function of Class II MHC (Ia) antigen-bearing cells in EFAD CS7B1/6 mouse epidermis. Immunofluorescence studies revealed 1.9–9.6 (mean ± SEM = 5.2 ± 2.6) times more class II MHC (Ia) antigen-bearing epidermal cells in suspensions prepared from EFAD as compared to normal skin. Analysis of epidermal sheets demonstrated similar numbers of dendritic Ia+ and NLDC145+ cells in EFAD and normal epidermis, however. This discrepancy occurred because some keratinocytes in EFAD epidermal sheets expressed class II MHC (Ia) antigens, whereas keratinocytes in normal mouse epidermis did not. Two-color flow cytometry confirmed that all Ia+ cells in normal epidermis are Langerhans (Ia+ NLDC145+) cells, whereas Ia+ cells in EFAD epidermis are comprised of Langerhans cells and a subpopulation of keratinocytes (Ia+ NLDC145-. Similar levels of Ia antigens were expressed on EFAD and normal Langerhans cells. EFAD and normal epidermal cells were also compared in several in vitro assays of accessory cell function. Epidermal cells prepared from EFAD C57B1/6 mice present the protein antigen DNP-Ova to primed helper T cells more effectively than epidermal cells prepared from normal animals. EFAD epidermal cells are also more potent stimulators of T cells in primary and secondary allogeneic mixed lymphocyte-epidermal cell reactions than normal epidermal cells. The functional differences between EFAD and normal epidermal cells do not appear to result from increased cytokine release or decreased prostaglandin production by EFAD epidermal cells. In view of these findings and the observation that the antigen-presenting cell activity of EFAD epidermal cells correlates with the number of Ia+ keratinocytes in epidermal cell preparations, Ia+ keratinocytes (in the presenceof Langerhans cells) may potentiate cutaneous immune responses in vitro and perhaps in vivo as well. these results also suggest that (n-6) fatty acids or metabolites of (n-6) fatty acids are involved in regulating the expression of class II MHC (Ia) antigens by keratinocytes in vivo

    Formation of solid particles in synoptic-scale Arctic PSCs in early winter 2002/2003

    Get PDF
    International audiencePolar stratospheric clouds (PSC) have been observed in early winter (December 2002) during the SOLVE II/Vintersol campaign, both from balloons carrying comprehensive instrumentation for measurements of chemical composition, size distributions, and optical properties of the particles, as well as from individual backscatter soundings from Esrange and Sodankylä. The observations are unique in the sense that the PSC particles seem to have formed in the early winter under synoptic temperature conditions and not being influenced by mountain lee waves. A sequence of measurements during a 5-days period shows a gradual change between liquid and solid type PSCs with the development of a well-known sandwich structure. It appears that all PSC observations show the presence of a background population of solid particles, occasionally mixed in with more optically dominating liquid particles. The measurements have been compared with results from a detailed microphysical and optical simulation of the formation processes. Calculated extinctions are in good agreement with SAGE-III measurements from the same period. Apparently the solid particles are controlled by the synoptic temperature history while the presence of liquid particles is controlled by the local temperatures at the time of observation. The temperature histories indicate that the solid particles are nucleated above the ice frost point, and a surface freezing mechanism for this is included in the model. Reducing the calculated freezing rates by a factor 10-20, the model is able to simulate the observed particle size distributions and reproduce observed HNO3 gas phase concentrations

    Photochemistry of Furyl- and Thienyldiazomethanes: Spectroscopic Characterization of Triplet 3-Thienylcarbene

    Get PDF
    Photolysis (λ \u3e 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N2 at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm–1, |E/hc| = 0.0554 cm–1; |D/hc| = 0.579 cm–1, |E/hc| = 0.0315 cm–1). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon—an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λmax = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C5H4S or C5H4O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively)

    Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature.

    Get PDF
    Myasthenia gravis (MG) is an autoimmune disease characterized by impaired neuromuscular signaling due to autoantibodies targeting the acetylcholine receptor. Although its auto-antigens and effector mechanisms are well defined, the cellular and molecular drivers underpinning MG remain elusive. Here, we employed high-dimensional single-cell mass and spectral cytometry of blood and thymus samples from MG patients in combination with supervised and unsupervised machine-learning tools to gain insight into the immune dysregulation underlying MG. By creating a comprehensive immune map, we identified two dysregulated subsets of inflammatory circulating memory T helper (Th) cells. These signature ThCD103 and ThGM cells populated the diseased thymus, were reduced in the blood of MG patients, and were inversely correlated with disease severity. Both signature Th subsets rebounded in the blood of MG patients after surgical thymus removal, indicative of their role as cellular markers of disease activity. Together, this in-depth analysis of the immune landscape of MG provides valuable insight into disease pathogenesis, suggests novel biomarkers and identifies new potential therapeutic targets for treatment

    Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"

    Full text link
    In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that XENON100's upper limits on spin-independent WIMP-nucleon cross sections for WIMP masses below 10 GeV "may be understated by one order of magnitude or more". Having performed a similar, though more detailed analysis prior to the submission of our new result (arXiv:1207.5988), we do not confirm these findings. We point out the rationale for not considering the described effect in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure

    Search for Event Rate Modulation in XENON100 Electronic Recoil Data

    Get PDF
    We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.Comment: 6 pages, 4 figure

    The pH of the skin surface and its impact on the barrier function

    Get PDF
    The `acid mantle' of the stratum corneum seems to be important for both permeability barrier formation and cutaneous antimicrobial defense. However, the origin of the acidic pH, measurable on the skin surface, remains conjectural. Passive and active influencing factors have been proposed, e. g. eccrine and sebaceous secretions as well as proton pumps. In recent years, numerous investigations have been published focusing on the changes in the pH of the deeper layers of the stratum corneum, as well as on the influence of physiological and pathological factors. The pH of the skin follows a sharp gradient across the stratum corneum, which is suspected to be important in controlling enzymatic activities and skin renewal. The skin pH is affected by a great number of endogenous factors, e. g. skin moisture, sweat, sebum, anatomic site, genetic predisposition and age. In addition, exogenous factors like detergents, application of cosmetic products, occlusive dressings as well as topical antibiotics may influence the skin pH. Changes in the pH are reported to play a role in the pathogenesis of skin diseases like irritant contact dermatitis, atopic dermatitis, ichthyosis, acne vulgaris and Candida albicans infections. Therefore, the use of skin cleansing agents, especially synthetic detergents with a pH of about 5.5, may be of relevance in the prevention and treatment of those skin diseases. Copyright (c) 2006 S. Karger AG, Base
    corecore