136 research outputs found
Confinement and scaling in deep inelastic scattering
We show that parton confinement in the final state generates large
corrections to Bjorken scaling, thus leaving less room for the logarithmic
corrections. In particular, the -scaling violations at large are
entirely described in terms of power corrections. For treatment of these
non-perturbative effects, we derive a new expansion in powers of for
the structure function that is free of infra-red singularities and which
reduces corrections to the leading term. The leading term represents scattering
from an off-mass-shell parton, which keeps the same virtual mass in the final
state. It is found that this quasi-free term is a function of a new variable
, which coincides with the Bjorken variable for . The
two variables are very different, however, at finite . In particular, the
variable depends on the invariant mass of the spectator particles.
Analysis of the data at large shows excellent scaling in the variable , and determines the value of the diquark mass to be close to zero. -scaling allows us to extract the structure function near the elastic
threshold. It is found to behave as . Predictions for the
structure functions based on -scaling are made.Comment: Discussion of target mass corrections is added. Accepted for
publication in Phys. Rev.
General relativistic Sagnac formula revised
The Sagnac effect is a time or phase shift observed between two beams of
light traveling in opposite directions in a rotating interferometer. We show
that the standard description of this effect within the framework of general
relativity misses the effect of deflection of light due to rotational inertial
forces. We derive the necessary modification and demonstrate it through a
detailed analysis of the square Sagnac interferometer rotating about its
symmetry axis in Minkowski space-time. The role of the time shift in a Sagnac
interferometer in the synchronization procedure of remote clocks as well as its
analogy with the Aharanov-Bohm effect are revised.Comment: 11 pages, 3 figure
The evolution of metallicity and metallicity gradients from z = 2.7 to 0.6 with KMOS<sup>3D</sup>
We present measurements of the [NII]/Ha ratio as a probe of gas-phase oxygen
abundance for a sample of 419 star-forming galaxies at z=0.6-2.7 from the
KMOS3D near-IR multi-IFU survey. The mass-metallicity relation (MZR) is
determined consistently with the same sample selection, metallicity tracer, and
methodology over the wide redshift range probed by the survey. We find good
agreement with long-slit surveys in the literature, except for the low-mass
slope of the relation at z~2.3, where this sample is less biased than previous
samples based on optical spectroscopic redshifts. In this regime we measure a
steeper slope than some literature results. Excluding the AGN contribution from
the MZR reduces sensitivity at the high mass end, but produces otherwise
consistent results. There is no significant dependence of the [NII]/Ha ratio on
SFR or environment at fixed redshift and stellar mass. The IFU data allow
spatially resolved measurements of [NII]/Ha, from which we can infer abundance
gradients for 180 galaxies, thus tripling the current sample in the literature.
The observed gradients are on average flat, with only 15 gradients
statistically offset from zero at >3sigma. We have modelled the effect of
beam-smearing, assuming a smooth intrinsic radial gradient and known seeing,
inclination and effective radius for each galaxy. Our seeing-limited
observations can recover up to 70% of the intrinsic gradient for the largest,
face-on disks, but only 30% for the smaller, more inclined galaxies. We do not
find significant trends between observed or corrected gradients and any stellar
population, dynamical or structural galaxy parameters, mostly in agreement with
existing studies with much smaller sample sizes. In cosmological simulations,
strong feedback is generally required to produce flat gradients at high
redshift.Comment: submitted to Ap
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 Ă 10â8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 Ă 10â10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = â0.32, SE = 0.05, P = 6.5 Ă 10â12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinsonâs disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies
We determine the relative rates of short GRBs in cluster and field early-type
galaxies as a function of the age probability distribution of their
progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the
difference in the growth of stellar mass in clusters and in the field, which
arises from the combined effects of the galaxy stellar mass function, the
early-type fraction, and the dependence of star formation history on mass and
environment. This approach complements the use of the early- to late-type host
galaxy ratio, with the added benefit that the star formation histories of
early-type galaxies are simpler than those of late-type galaxies, and any
systematic differences between progenitors in early- and late-type galaxies are
removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n =
-2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2,
corresponding to n ~ 0 - 1. This is similar to the value inferred from the
ratio of short GRBs in early- and late-type hosts, but it differs from the
value of n ~ -1 for NS binaries in the Milky Way. We stress that this general
approach can be easily modified with improved knowledge of the effects of
environment and mass on the build-up of stellar mass, as well as the effect of
globular clusters on the short GRB rate. It can also be used to assess the age
distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio
Measurement of Z0 decays to hadrons, and a precise determination of the number of neutrino species
We have made a precise measurement of the cross section for e+e--->Z0-->hadrons with the L3 detector at LEP, covering the range from 88.28 to 95.04 GeV. From a fit to the Z0 mass, total width, and the hadronic cross section to be MZ0=91.160 +/- 0.024 (experiment) +/-0.030(LEP) GeV, [Gamma]Z0=2.539+/-0.054 GeV, and [sigma]h(MZ0)=29.5+/-0.7 nb. We also used the fit to the Z0 peak cross section and the width todetermine [Gamma]invisible=0.548+/-0.029 GeV, which corresponds to 3.29+/-0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4[sigma] confidence level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28683/3/0000500.pd
- âŠ