Abstract

We show that parton confinement in the final state generates large 1/Q21/Q^2 corrections to Bjorken scaling, thus leaving less room for the logarithmic corrections. In particular, the xx-scaling violations at large xx are entirely described in terms of power corrections. For treatment of these non-perturbative effects, we derive a new expansion in powers of 1/Q21/Q^2 for the structure function that is free of infra-red singularities and which reduces corrections to the leading term. The leading term represents scattering from an off-mass-shell parton, which keeps the same virtual mass in the final state. It is found that this quasi-free term is a function of a new variable xˉ\bar x, which coincides with the Bjorken variable xx for Q2Q^2\to\infty. The two variables are very different, however, at finite Q2Q^2. In particular, the variable xˉ\bar x depends on the invariant mass of the spectator particles. Analysis of the data at large xx shows excellent scaling in the variable xˉ\bar x, and determines the value of the diquark mass to be close to zero. xˉ\bar x-scaling allows us to extract the structure function near the elastic threshold. It is found to behave as F2(1x)3.7F_2\sim (1-x)^{3.7}. Predictions for the structure functions based on xˉ\bar x-scaling are made.Comment: Discussion of target mass corrections is added. Accepted for publication in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions