11,301 research outputs found

    Central extensions of mapping class groups from characteristic classes

    No full text
    Tangential structures on smooth manifolds, and the extension of mapping class groups they induce, admit a natural formulation in terms of higher (stacky) differential geometry. This is the literal translation of a classical construction in differential topology to a sophisticated language, but it has the advantage of emphasizing how the whole construction naturally emerges from the basic idea of working in slice categories. We characterize, for every higher smooth stack equipped with tangential structure, the induced higher group extension of the geometric realization of its higher automor- phism stack. We show that when restricted to smooth manifolds equipped with higher degree topological structures, this produces higher extensions of homotopy types of diffeomorphism groups. Passing to the groups of connected components, we obtain abelian extensions of mapping class groups and we derive sufficient conditions for these being central. We show as a special case that this provides an elegant re-construction of Segal’s approach to Z\mathbb{Z} -extensions of mapping class groups of surfaces that provides the anomaly cancellation of the modular functor in Chern-Simons theory. Our construction generalizes Segal’s approach to higher central extensions of mapping class groups of higher dimensional manifolds with higher tangential structures, expected to provide the analogous anomaly cancellation for higher dimensional TQFTs

    Insights on star formation histories and physical properties of 1.2≀zâ‰Č41.2 \leq z \lesssim 4 Herschel-detected galaxies

    Get PDF
    We test the impact of using variable star forming histories (SFHs) and the use of the IR luminosity (LIR) as a constrain on the physical parameters of high redshift dusty star-forming galaxies. We explore in particular the stellar properties of galaxies in relation with their location on the SFR-M* diagram. We perform SED fitting of the UV-NIR and FIR emissions of a large sample of GOODS-Herschel galaxies, for which rich multi-wavelength observations are available. We test different SFHs and imposing energy conservation in the SED fitting process, to face issues like the age-extinction degeneracy and produce SEDs consistent with observations. Our models work well for the majority of the sample, with the notable exception of the high LIR end, for which we have indications that our simple energy conservation approach cannot hold true. We find trends in the SFHs fitting our sources depending on stellar mass M* and z. Trends also emerge in the characteristic timescales of the SED models depending on the location on the SFR-M* diagram. We show that whilst using the same available observational data, we can produce galaxies less star-forming than usually inferred, if we allow declining SFHs, while properly reproducing their observables. These sources can be post-starbursts undergoing quenching, and their SFRs are potentially overestimated if inferred from their LIR. Fitting without the IR constrain leads to a strong preference for declining SFHs, while its inclusion increases the preference of rising SFHs, more so at high z, in tentative agreement with the cosmic star formation history. Keeping in mind that the sample is biased towards high LIR, the evolution shaped by our model appears as both bursty (initially) and steady-lasting (later on). The global SFH of the sample follows the cosmic SFH with a small scatter, and is compatible with the "downsizing" scenario of galaxy evolution.Comment: 28 pages, 26 figures, one appendix, Accepted for publication in Astronomy & Astrophysic

    Direct measurement of diurnal polar motion by ring laser gyroscopes

    Get PDF
    We report the first direct measurements of the very small effect of forced diurnal polar motion, successfully observed on three of our large ring lasers, which now measure the instantaneous direction of Earth's rotation axis to a precision of 1 part in 10^8 when averaged over a time interval of several hours. Ring laser gyroscopes provide a new viable technique for directly and continuously measuring the position of the instantaneous rotation axis of the Earth and the amplitudes of the Oppolzer modes. In contrast, the space geodetic techniques (VLBI, SLR, GPS, etc.) contain no information about the position of the instantaneous axis of rotation of the Earth, but are sensitive to the complete transformation matrix between the Earth-fixed and inertial reference frame. Further improvements of gyroscopes will provide a powerful new tool for studying the Earth's interior.Comment: 5 pages, 4 figures, agu2001.cl

    Experimental investigation of the performance of a supersonic compressor cascade

    Get PDF
    Results are presented from an experimental investigation of a linear, supersonic, compressor cascade tested in the supersonic cascade wind tunnel facility at the DFVLR in Cologne, Federal Republic of Germany. The cascade design was derived from the near-tip section of a high-through-flow axial flow compressor rotor with a design relative inlet Mach number of 1.61. Test data were obtained over a range of inlet Mach numbers from 1.23 to 1.71, and a range of static pressure ratios and axial-velocity-density ratios (AVDR) at the design inlet condition. Flow velocity measurements showing the wave pattern in the cascade entrance region were obtained using a laser transit anemometer. From these measurements, some unique-incidence conditions were determined, thus relating the supersonic inlet Mach number to the inlet flow direction. The influence of static pressure ratio and AVDR on the blade passage flow and the blade-element performance is described, and an empirical correlation is used to show the influence of these two (independent) parameters on the exit flow angle and total-pressure loss for the design inlet condition

    Non-ergodic effects in the Coulomb glass: specific heat

    Full text link
    We present a numerical method for the investigation of non-ergodic effects in the Coulomb glass. For that, an almost complete set of low-energy many-particle states is obtained by a new algorithm. The dynamics of the sample is mapped to the graph formed by the relevant transitions between these states, that means by transitions with rates larger than the inverse of the duration of the measurement. The formation of isolated clusters in the graph indicates non-ergodicity. We analyze the connectivity of this graph in dependence on temperature, duration of measurement, degree of disorder, and dimensionality, studying how non-ergodicity is reflected in the specific heat.Comment: Submited Phys. Rev.

    The Physical Properties of LBGs at z>5: Outflows and the "pre-enrichment problem"

    Full text link
    We discuss the properties of Lyman Break galaxies (LBGs) at z>5 as determined from disparate fields covering approximately 500 sq. arcmin. While the broad characteristics of the LBG population has been discussed extensively in the literature, such as luminosity functions and clustering amplitude, we focus on the detailed physical properties of the sources in this large survey (>100 with spectroscopic redshifts). Specifically, we discuss ensemble mass estimates, stellar mass surface densities, core phase space densities, star-formation intensities, characteristics of their stellar populations, etc as obtained from multi-wavelength data (rest-frame UV through optical) for a subsample of these galaxies. In particular, we focus on evidence that these galaxies drive vigorous outflows and speculate that this population may solve the so-called ``pre-enrichment problem''. The general picture that emerges from these studies is that these galaxies, observed about 1 Gyr after the Big Bang, have properties consistent with being the progenitors of the densest stellar systems in the local Universe -- the centers of old bulges and early type galaxies.Comment: 4 pages, to appear in "Pathways Through an Eclectic Universe", J. H. Knappen, T. J. Mahoney, and A. Vazedekis (Eds.), ASP Conf. Ser., 200

    Breaking of ergodicity and long relaxation times in systems with long-range interactions

    Full text link
    The thermodynamic and dynamical properties of an Ising model with both short range and long range, mean field like, interactions are studied within the microcanonical ensemble. It is found that the relaxation time of thermodynamically unstable states diverges logarithmically with system size. This is in contrast with the case of short range interactions where this time is finite. Moreover, at sufficiently low energies, gaps in the magnetization interval may develop to which no microscopic configuration corresponds. As a result, in local microcanonical dynamics the system cannot move across the gap, leading to breaking of ergodicity even in finite systems. These are general features of systems with long range interactions and are expected to be valid even when the interaction is slowly decaying with distance.Comment: 4 pages, 5 figure

    Monte-Carlo Simulations of the Dynamical Behavior of the Coulomb Glass

    Get PDF
    We study the dynamical behavior of disordered many-particle systems with long-range Coulomb interactions by means of damage-spreading simulations. In this type of Monte-Carlo simulations one investigates the time evolution of the damage, i.e. the difference of the occupation numbers of two systems, subjected to the same thermal noise. We analyze the dependence of the damage on temperature and disorder strength. For zero disorder the spreading transition coincides with the equilibrium phase transition, whereas for finite disorder, we find evidence for a dynamical phase transition well below the transition temperature of the pure system.Comment: 10 pages RevTeX, 8 Postscript figure
    • 

    corecore