2,144 research outputs found

    The Partial Veto as a Negotiating Tool

    Get PDF

    Laser Guide Stars for Extremely Large Telescopes: Efficient Shack-Hartmann Wavefront Sensor Design using Weighted center-of-gravity algorithm

    Full text link
    Over the last few years increasing consideration has been given to the study of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by the atmosphere in optical and near-infrared astronomical observations from the ground. A possible method for the generation of a LGS is the excitation of the Sodium layer in the upper atmosphere at approximately 90 km of altitude. Since the Sodium layer is approximately 10 km thick, the artificial reference source looks elongated, especially when observed from the edge of a large aperture. The spot elongation strongly limits the performance of the most common wavefront sensors. The centroiding accuracy in a Shack-Hartmann wavefront sensor, for instance, decreases proportionally to the elongation (in a photon noise dominated regime). To compensate for this effect a straightforward solution is to increase the laser power, i.e. to increase the number of detected photons per subaperture. The scope of the work presented in this paper is twofold: an analysis of the performance of the Weighted Center of Gravity algorithm for centroiding with elongated spots and the determination of the required number of photons to achieve a certain average wavefront error over the telescope aperture.Comment: 10 pages, 14 figure

    Measurement of oxidation in plasma Lp(a) in CAPD patients using a novel ELISA

    Get PDF
    Measurement of oxidation in plasma Lp(a) in CAPD patients using a novel ELISA.BackgroundLGE2 is produced by the cyclooxygenase- or free radical-mediated modification of arachidonate and is formed during the oxidation of low density lipoprotein (LDL) with subsequent adduction to lysine residues in apo B. We have developed a sensitive enzyme-linked sandwich immunosorbent assay (ELISA) for detection and measurement of LGE2-protein adducts as an estimate of oxidation of plasma LDL and Lp(a).MethodsThe assay employs rabbit polyclonal antibodies directed against LGE2-protein adducts that form pyrroles, and alkaline phosphatase-conjugated polyclonal antibodies specific for apo B or apo (a). It demonstrates a high degree of specificity, sensitivity and validity.ResultsEpitopes characteristic for LGE2-pyrroles were quantified in patients with end-stage renal disease (ESRD) that had undergone continuous ambulatory peritoneal dialysis (CAPD) and in a gender- and age-matched control population. In addition to finding that both LDL and Lp(a) levels were elevated in CAPD patients, we also found that plasma Lp(a) but not LDL was more oxidized in CAPD patients when compared to corresponding lipoproteins from healthy subjects. Using density gradient ultracentrifugation of plasma samples, we found that modified Lp(a) floats at the same density as total Lp(a).ConclusionsThe results of this study demonstrate that oxidation of plasma Lp(a) is a characteristic of ESRD patients undergoing CAPD. This ELISA may be useful for further investigations on oxidation of lipoproteins in the circulation of specific patient populations

    The Optical Structure of the Starburst Galaxy M82. II. Nebular Properties of the Disk and Inner-Wind

    Full text link
    (Abridged) In this second paper of the series, we present the results from optical Gemini-North GMOS-IFU and WIYN DensePak IFU spectroscopic observations of the starburst and inner wind zones of M82, with a focus on the state of the T~10^4 K ionized interstellar medium. Our electron density maps show peaks of a few 1000 cm-3, local small spatial-scale variations, and a fall-off in the minor axis direction. We discuss the implications of these results with regards to the conditions/locations that may favour the escape of individual cluster winds. Our findings imply that the starburst environment is highly fragmented into a range of clouds from small/dense clumps with low filling factors (<1pc, n_e>10^4 cm-3) to larger filling factor, less dense gas. The near-constant state of the ionization state of the ~10^4 K gas throughout the starburst can be explained as a consequence of the small cloud sizes, which allow the gas conditions to respond quickly to any changes. We have examined in more detail both the broad (FWHM 150-350 km/s) line component found in Paper I that we associated with emission from turbulent mixing layers on the gas clouds, and the discrete outflow channel identified within the inner wind. The channel appears as a coherent, expanding cylindrical structure of length >120 pc and and width 35-50 pc and the walls maintain an approximately constant (but subsonic) expansion velocity of ~60 km/s. We use the channel to examine further the relationship between the narrow and broad component emitting gas within the inner wind. Within the starburst energy injection zone, we find that turbulent motions (as traced by the broad component) appear to play an increasing role with height.Comment: 27 pages, 18 figures (13 in colour), accepted for publication in Ap

    Mode of Action of the Natural Product Allicin in a Plant Model:Influence on the Cytoskeleton and Subsequent Shift in Auxin Localization

    Get PDF
    Allicin is a defense substance produced by garlic cells when they are injured. It is a redox-active thiosulfinate showing redox-activity with a broad range of dose-dependent antimicrobial and biocidal activity. It is known that allicin efficiently oxidizes thiol-groups, and it has been described as a redox toxin because it alters the redox homeostasis in cells and triggers oxidative stress responses. Allicin can therefore be used as a model substance to investigate the action of thiol-specific prooxidants. In order to learn more about the effect of allicin on plants, we used pure synthetized allicin, and studied the influence of allicin on organelle movement in Tradescantia fluminensis as a cytoskeleton-dependent process. Furthermore, we investigated cytoplasmic streaming in sterile filaments of Tradescantia fluminensis, organelle movement using transgenic Arabidopsis with organelle-specifics GFP-tags, and effects on actin and tubulin in the cytoskeleton using GFP-tagged lines. Tubulin and actin were visualized by GFP-tagging in transgenic lines of Arabidopsis thaliana to visualize the influence of allicin on the cytoskeleton. Since auxin transport depends on recycling and turnover of the PIN protein involving cytoskeletal transport to and from the membrane localization sites, auxin distribution in roots was investigated using of transgenic PIN1–GFP, PIN3–GFP, DR5–GFP and DII–VENUS Arabidopsis reporter lines. Allicin inhibited cytoplasmic streaming in T. fluminensis, organelle movement of peroxi-somesperoxisomes, and the Golgi apparatus in a concentration-dependent manner. It also destroyed the correct root tip distribution of auxin, which probably contributed to the observed inhibition of root growth. These observations of the disruption of cytoskeleton-dependent transport processes in plant cells add a new facet to the mechanism of action of allicin as a redox toxin in cells

    Single spontaneous photon as a coherent beamsplitter for an atomic matterwave

    Full text link
    In spontaneous emission an atom in an excited state undergoes a transition to the ground state and emits a single photon. Associated with the emission is a change of the atomic momentum due to photon recoil. Photon emission can be modified close to surfaces and in cavities. For an ion, localized in front of a mirror, coherence of the emitted resonance fluorescence has been reported. In free space experiments demonstrated that spontaneous emission destroys motional coherence. Here we report on motional coherence created by a single spontaneous emission event close to a mirror surface. The coherence in the free atomic motion is verified by atom interferometry. The photon can be regarded as a beamsplitter for an atomic matterwave and consequently our experiment extends the original recoiling slit Gedanken experiment by Einstein to the case where the slit is in a robust coherent superposition of the two recoils associated with the two paths of the quanta.Comment: main text: 5 pages, 4 figure; supplementary information: 8 pages, 1 figur

    The SINS survey of z~2 galaxy kinematics: properties of the giant star forming clumps

    Full text link
    We have studied the properties of giant star forming clumps in five z~2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H{\alpha}/[NII] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km/s/kpc, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized, or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.Comment: accepted Astrophys. Journal, February 9, 201

    Community-Driven Methods for Open and Reproducible Software Tools for Analyzing Datasets from Atom Probe Microscopy

    Get PDF
    Atom probe tomography, and related methods, probe the composition and the three-dimensional architecture of materials. The software tools which microscopists use, and how these tools are connected into workflows, make a substantial contribution to the accuracy and precision of such material characterization experiments. Typically, we adapt methods from other communities like mathematics, data science, computational geometry, artificial intelligence, or scientific computing. We also realize that improving on research data management is a challenge when it comes to align with the FAIR data stewardship principles. Faced with this global challenge, we are convinced it is useful to join forces. Here, we report the results and challenges with an inter-laboratory call for developing test cases for several types of atom probe microscopy software tools. The results support why defining detailed recipes of software workflows and sharing these recipes is necessary and rewarding: Open source tools and (meta)data exchange can help to make our day-to-day data processing tasks become more efficient, the training of new users and knowledge transfer become easier, and assist us with automated quantification of uncertainties to gain access to substantiated results

    The SINS/zC-SINF survey of z~2 galaxy kinematics: Outflow properties

    Full text link
    Based on SINFONI Ha, [NII] and [SII] AO data of 30 z \sim 2 star-forming galaxies (SFGs) from the SINS and zcSINF surveys, we find a strong correlation of the Ha broad flux fraction with the star formation surface density of the galaxy, with an apparent threshold for strong outflows occurring at 1 Msun yr^-1 kpc^-2. Above this threshold, we find that SFGs with logm_\ast>10 have similar or perhaps greater wind mass loading factors (eta = Mdotout/SFR) and faster outflow velocities than lower mass SFGs. This trend suggests that the majority of outflowing gas at z \sim 2 may derive from high-mass SFGs, and that the z \sim 2 mass-metallicity relation is driven more by dilution of enriched gas in the galaxy gas reservoir than by the efficiency of outflows. The mass loading factor is also correlated with the SFR and inclination, such that more star-forming and face-on galaxies launch more powerful outflows. For galaxies that have evidence for strong outflows, we find that the broad emission is spatially extended to at least the half-light radius (\sim a few kpc). We propose that the observed threshold for strong outflows and the observed mass loading of these winds can be explained by a simple model wherein break-out of winds is governed by pressure balance in the disk. Using the ratio of the [SII] doublet in a broad and narrow component, we find that outflowing gas has a density of \sim10-100 cm^-3, significantly less than that of the star forming gas (600 cm^-3).Comment: 7 pages, 3 figures, accepted by Ap
    • …
    corecore