42 research outputs found

    An interdisciplinary approach to data management

    Get PDF
    Many scientific issues involve interdisciplinary approaches that demand scientists with diverse skills and research fields. For the design and fabrication of new materials, this is especially true since new materials with macroscopically observable properties must be proposed based on changes at the molecular level. Research projects of this kind pose particular challenges for efficient execution and documentation, as research data management (RDM) tools usually fit very well to a specific research area, but cannot provide solutions for interdisciplinary topics. In order to guarantee consistent research and its documentation across disciplines, different tools, which may be used in several groups, must be used cooperatively. In the context of the Science Data Center MoMaF, among other things, strategies are being developed to enable research data management across scales. The RDM tools used for this are Chemotion and Kadi4Mat. The systems cover research at the molecular level (chemotion ELN) as well as simulation activities on the meso- and macroscopic scale (Kadi4Mat), and will be extended within the Science Data Center to enable cooperative use of the systems for work across scales. A first use case shows how Chemotion ELN can be used to document necessary parameters at the molecular level, in order to then be able to manage simulations of phase separation processes on their basis in a further step with the help of Kadi4Mat. For this purpose, the procedure and documentation method of already completed projects were first analysed in order to be able to propose a concept for future processes. Chemotion ELN is used in the presented procedure to document molecular descriptions, the performance of polymerization reactions and their outcome, as well as the properties obtained experimentally and from the literature. Kadi4Mat manages and transfers the parameters from the molecular description as input for mesoscopic simulations that describe the phase separation process in a time-dependent manner. Finally, by applying analysis tools on the time-dependent data via Kadi4Mat, macroscopic properties can be derived across scales as a function of the molecular composition

    The selective phosphodiesterase 4 inhibitor roflumilast and phosphodiesterase 3/4 inhibitor pumafentrine reduce clinical score and TNF expression in experimental colitis in mice.

    Get PDF
    The specific inhibition of phosphodiesterase (PDE)4 and dual inhibition of PDE3 and PDE4 has been shown to decrease inflammation by suppression of pro-inflammatory cytokine synthesis. We examined the effect of roflumilast, a selective PDE4 inhibitor marketed for severe COPD, and the investigational compound pumafentrine, a dual PDE3/PDE4 inhibitor, in the preventive dextran sodium sulfate (DSS)-induced colitis model. The clinical score, colon length, histologic score and colon cytokine production from mice with DSS-induced colitis (3.5% DSS in drinking water for 11 days) receiving either roflumilast (1 or 5 mg/kg body weight/d p.o.) or pumafentrine (1.5 or 5 mg/kg/d p.o.) were determined and compared to vehicle treated control mice. In the pumafentrine-treated animals, splenocytes were analyzed for interferon-γ (IFNγ) production and CD69 expression. Roflumilast treatment resulted in dose-dependent improvements of clinical score (weight loss, stool consistency and bleeding), colon length, and local tumor necrosis factor-α (TNFα) production in the colonic tissue. These findings, however, were not associated with an improvement of the histologic score. Administration of pumafentrine at 5 mg/kg/d alleviated the clinical score, the colon length shortening, and local TNFα production. In vitro stimulated splenocytes after in vivo treatment with pumafentrine showed a significantly lower state of activation and production of IFNγ compared to no treatment in vivo. These series of experiments document the ameliorating effect of roflumilast and pumafentrine on the clinical score and TNF expression of experimental colitis in mice

    A workshop report on the FDNext project funded by the German Research Foundation

    Get PDF
    Nach zwei Jahren Projektlaufzeit lud der DFG-geförderte Projektverbund FDNext zu einem zweiten Community-Workshop ein. Unter dem Motto „Nachhaltiges Forschungsdatenmanagement gemeinsam umsetzen“ wurde eine projektweite Ergebnisbilanz gezogen und im Rahmen einer Online-Veranstaltung vorgestellt. Einzelne Formate ermöglichten den Austausch und die Diskussion zur Vision des Kulturwandels und eines ganzheitlichen FDMs durch Initiativen wie die Nationale Forschungsdateninfrastruktur (NFDI) sowie die Möglichkeiten der Zusammenarbeit zwischen einzelnen Konsortien und Hochschulen. Dabei wurden Aufgaben identifiziert, welche nur gemeinsam mit der FDM- bzw. Wissenschafts-Community bearbeitet werden können.Two years into the project duration, the collaborative project FDNext convened its second community workshop titled “Implementing Sustainable Research Data Management in a Joint Project”. Focusing on a review of achievements, the online event presented findings from all participating parties. Various formats fostered exchange and debates about perspectives of cultural change and a holistic research data management through initiatives such as the Nationale Forschungsdateninfrastruktur NFDI (national research data infrastructure), as well as collaboration opportunities between individual consortia and universities. Tasks and challenges that can only be dealt with in cooperation with RDM and scientific communities have been identified.Peer Reviewe

    Chemical and Physical Environmental Conditions Underneath Mat- and Canopy-Forming Macroalgae, and Their Effects on Understorey Corals

    Get PDF
    Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m−2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation

    Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease

    Get PDF
    We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)
    corecore