10 research outputs found

    A design concept for radiation hardened RADFET readout system for space applications

    Get PDF
    Instruments for measuring the absorbed dose and dose rate under radiation exposure, known as radiation dosimeters, are indispensable in space missions. They are composed of radiation sensors that generate current or voltage response when exposed to ionizing radiation, and processing electronics for computing the absorbed dose and dose rate. Among a wide range of existing radiation sensors, the Radiation Sensitive Field Effect Transistors (RADFETs) have unique advantages for absorbed dose measurement, and a proven record of successful exploitation in space missions. It has been shown that the RADFETs may be also used for the dose rate monitoring. In that regard, we propose a unique design concept that supports the simultaneous operation of a single RADFET as absorbed dose and dose rate monitor. This enables to reduce the cost of implementation, since the need for other types of radiation sensors can be minimized or eliminated. For processing the RADFET's response we propose a readout system composed of analog signal conditioner (ASC) and a self-adaptive multiprocessing system-on-chip (MPSoC). The soft error rate of MPSoC is monitored in real time with embedded sensors, allowing the autonomous switching between three operating modes (high-performance, de-stress and fault-tolerant), according to the application requirements and radiation conditions

    X/Ka-Band Dual-Polarized Digital Beamforming Synthetic Aperture Radar

    Get PDF
    This paper presents a digital beamforming (DBF) synthetic aperture radar (SAR) for future spaceborne earth observation systems. The objective of the DBF-SAR system is to achieve a low cost, lightweight, low-power consumption, and dual-band (X/Ka) dual-polarized module for the next-generation spaceborne SAR system in Europe. The architectures and modules of the proposed DBF-SAR system are designed according to a realistic mission scenario, which is compatible with the future small/microsatellites platforms. This system fills an important gap in the conception of the future DBF-SAR, facilitating a high level of integration and complexity reduction. The proposed system is considered not only the first demonstrator of a receive-only spaceborne DBF system, but also the first X/Ka-band dual-polarized SAR system with shared aperture. This paper presents a description of the proposed instrument hardware and first experimental validations. The concept and design of the DBF multistatic SAR system are discussed and presented first, followed by the design of subsystems such as DBF networks, microwave integrated circuit, and antennas. Simulated and measured results of the subsystems are presented, demonstrating that the proposed SAR instrument architecture is well-suited for the future SAR applications

    Channel Characterization of a Dual-Band Dual-Polarized SAR with Digital Beamforming

    No full text
    This paper presents the integration and channel characterization of a highly integrated dualband digital beamforming space-borne ynthetic aperture radar (SAR) receiver. The proposed SAR sensor is a low-cost, lightweight, low-power consumption, and dual-band (X/Ka) dualpolarized module ready for the next-generation space-borne SAR missions. In previous works, by the authors, the design and experimental characterization of each sub-system was already presented and discussed. This work expands upon the previous characterization by providing an exhaustive experimental assessment of the fully integrated system. As it will be shown, the proposed tests were used to validate all the instrument channels in a set-up where the SAR sensor was illuminated by an external source minim the ground reflected waves. Test results demonstrate how the system channels are properly operating allowing the reception of the input signals and their processing in the digital domain. The possibility to easily implement a calibration procedure has also been validated to equalize, in the digital domain, the unavoidable amplitude differences between the different channels

    Highly Integrated Dual-Band Dual-Polarized Antenna Tile for SAR Applications

    No full text
    The experimental assessment of a highly integrated dual-band (9.6 and 35.75 GHz) dual-polarized antenna tile designed for Synthetic Aperture Radar (SAR) Digital Beam Forming (DBF) satellite applications is presented. Antennas, transitions and down-conversion chips are integrated in the same board fabricated using a customized 15 layer PCB. The experimental assessment proves the validity of the proposed manufacturing and integration approaches, a good agreement between the performance of the individual blocks and of the integrated system has been demonstrated

    A 60-Channels ADC Board for Space Borne DBF-SAR Applications

    Get PDF
    A 60-Channels ADC (Analog to Digital Converter) board for space borne Digital Beam Forming (DBF) Synthetic Aperture Radar (SAR) applications is described. The purpose of the board is to digitize analog signals detected by a dual band SAR receiving array operating at X and Ka band. It contains 48 high speed ADCs, which sample synchronously the incoming data of the antenna front end at Ka band. Other 12 ADCs are used to sample the coming data from the X band antennas. The board is composed by an analog section, a digital section and a clock distribution network used to synchronize the ADCs. Output digital signals from the board are routed to digital boards were are processed in the Digital Beamforming Network (DBFN)
    corecore