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Abstract— This paper presents a novel digital beamforming 

(DBF) space-borne synthetic aperture radar (SAR) for future 
space-borne earth observation. The objective of the DBF-SAR 
system is to realize a next-generation space-borne SAR system 
for Europe, which has low cost, light weight, low power 
consumption, dual-band (X/Ka) dual-polarized operation and a 
compact size compatible with future small/micro satellites 
platforms. The concept and designs of the DBF multi-static SAR 
system are discussed first, followed by the designs of sub-systems 
such as digital beamforming networks (DBFN), MMIC and 
antennas are presented. Then some simulated and measured 
results of each sub-system are shown. The proposed SAR system 
has low cost and compact size and is promising for future SAR 
applications.  

 
Index Terms— Dual-band, dual-polarized, digital 

beamforming (DBF), synthetic aperture radar (SAR). 
 

I. INTRODUCTION 

pace-borne (synthetic aperture radar) SAR is a multi-
purpose sensor that can be operated in earth observation 

(EO) in any weather conditions and all day/night. 
Traditionally, the SAR system in space is a mono-static 
system, which uses the same antenna for transmitting and 
receiving. Most of space-borne SAR systems are based on 
large-satellite platforms and make use of phase-arrays or 
mechanical steering, thus they suffer from the problems of 
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high cost, high power consumption and limited performance 
[1]. This paper will present a novel X/Ka-band digital 
beamforming SAR (DBF-SAR) system proposed in the project 
DIFFERENT. DIFFERENT is abbreviated of “digital beam 
forming for low-cost multi-static space-borne synthetic 
aperture radars”. The project currently still in progress, is 
collaborated amongst several leading universities, research 
institutes and companies in Europe. The aim of DIFFERENT 
project is to develop a low-cost, low weight, highly integrated, 
dual-band dual polarizations DBF-SAR instrument to 
overcome the limitations of current SAR systems and pave the 
way to small satellites formation flying missions.  
    To solve the problems of traditional SAR systems, a multi-
static SAR system based on formation flying small satellites is 
proposed in this paper. In this SAR system, the transmitting 
and receiving antennas are separated and mounted on separate 
satellites, enabling a lager freedom of operation and increasing 
the sensitivity due to the reduction of transmitter/receiver 
switches. This distributed multi-static SAR system will 
strongly support the use of small, low-cost satellites in the 
future [2]-[5]. The reduction of power demands of passive 
receivers will also enable an accommodation of radar payload 
on micro-satellites. 
    The DBF technique applied in SAR system is to reduce the 
cost, weight and power consumption in micro-satellites. In this 
concept, the receiving antenna is split into multiple sub-
aperture and the received signals from each sub-aperture 
element are separately amplified, down-converted and 
digitized. Compared with analogue beam forming, DBF is 
much more powerful as it can form multiple steerable beams 
towards different targets simultaneously and adaptive beam 
shaping [6]. The DBF-SAR system can improve the radar 
performances with better sensitivity, lower ambiguity level 
and higher resolution over a wide swath. In addition, due to 
the multiple independent data channels, the operation 
flexibility can be enhanced. It is evaluated that DBF will be 
employed by next-generation of space-borne SAR missions 
such as Tandem–L [7], Sentinel-1 follow-on [8], NASA-ISRO 
[9] and HRWS [10]. An example of a potential Earth 
observation mission based on the SAR system in DIFFERENT 
has been illustrated in [11] [12]. 
    Up to now, all of the SAR systems for small satellites are 
operating at single band, which limits SAR applications in 
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more advanced EO mission. A shared-aperture, dual-band 
dual-polarized SAR radiation board will not only lead to a 
compact size, low cost SAR system, but also versatile 
applications. To meet the requirements of the future SAR 
missions, the bandwidth of each band should be larger than 
5 %. Besides, the dual-band antenna with excellent cross 
polarization discrimination (XPD) and high isolation between 
elements are required.      
    This paper is organized as follows. Section II presents the 
state-of-the-art space-borne SAR systems and the DBF-SAR 
system in the project DIFFERENT. Section III presents the 
design of DBFN. Section IV presents the designs and results 
of MMIC and silicon manufacturing technologies. Section V 
presents the designs and results of the integrated feed using an 
X/Ka-band dual-polarized array and the whole antenna system 
followed by conclusion in Section VI.  
 

II. DBF-SAR SYSTEM  

A. State-Of-The-Art Space-Borne SAR Systems 

    There has been a considerable increase of EO applications 
that requires high-resolution SAR images. New SAR 
instruments must fulfill challenging requirements and enable 
the capability of acquiring images with both wide-swath and 
high resolution. The two key technologies considered to 
improve future SAR performance are digital beamforming and 
multi-aperture signal recording. An example of this approach 
is referred to as HRWS (high-resolution wide-swath) SAR 
which can cover 70 km swath with 1 m resolution [13].  
    In SAR applications, the radar pulse travel time and its 
arrival angle to the ground is directly associated. For every 
instant of time, the antenna gain in receiver can be optimized 
using real time beamforming in the direction the expected 
echo from ground is arriving. Digital beamforming on receiver 
denotes as SCORE (scan-on-received) process, which steers 
the narrow elevation beam on receiver in the desired direction. 
Large received antennas are frequently used to increase the 
sensitivity without reducing the swath width [14] [15].   
    To further improve the azimuth resolution than the 
conventional stripmap SAR, the receiver antenna can be 
divided into multiple sub-antennas along the track direction. 
Each antenna acquires several azimuth samples of echo from 
the transmitted pulse and sees a wider Doppler spectrum.  
Each aperture is connected to a received channel; the received 
signals are recorded and retransmitted to the ground for further 
post-processing [16]. A coherent combination of the signals 
from the different sub-apertures provides a unique high 
resolution SAR image. This technique has one limitation that 
fixed PRF (Pulse Repetition Frequency) is required. Between 
two consecutive transmit pulses, the satellite should move half 
distance of the length of the antenna [16]. This limitation can 
be overcome using multichannel data processing [18]-[20].  
    The HRWS SAR requires a large antenna apertures to cover 
a large swath areas. For every 100 km swath width, 
approximately 10 m aperture is required. To avoid the increase 
of the antenna size, new instruments have been developed 
[21]. In ScanSAR technique, different azimuth bursts are used 
to cover several swathes. The resolution loss of this approach 

is compensated using a wider Doppler spectrum. This system 
is considered by ESA to cover 400 km swath width with 5 m 
resolution in a project that will replace Sentinel-1 [22]. A 
drawback of the multichannel ScanSAR is that high Doppler 
centroid is required to meet the astringent resolution 
requirements.  
    Apart from multichannel ScanSAR, other alternative 
concepts have been considered to save the echoes arriving 
from different directions simultaneously. This concept 
increases the swath width without increasing the antenna size 
and bursts. Another interesting alternative are parabolic 
reflectors fed with a phased array. The reflector focuses the 
arriving echo and transmit it to the different channels of the 
feed [23] [24]. The feed elements are digitally combined, 
contributing to a multiple-beam technique. The main 
drawback of this mode is the blind ranges which is produced 
because the radar cannot transmit and receive simultaneously. 
This limitation can be overcome using a bi-static SAR where 
the pulse is transmitted with one satellite and received by the 
other [25]. Another alternative is to use a variation of PRF to 
shifts the blind ranges across the swath; however, additional 
data processing is required in this case [26]. 

B. SAR System in DIFFERENT Project and Its Design 

    The innovative SAR concept developed in DIFFERENT is 
based on digital beamforming (DBF) concept. DIFFERENT 
enables the realization of multiple advanced operational 
modes and make it innovative compared with current 
platforms. DIFFERENT has a dual-band (X- and Ka-bands) 
performance which enables it apply in new mission scenarios 
[29]. The project is planned for operating in a constellation 
with two or more satellites involved. The DIFFERENT 
concept mission could not only fly in tandem with an existing 
X-band master satellite but also as a swarm of small platforms 
to collect the Ka-band data. The Ka-band sub-system of 
DIFFERENT can be extended into a compact single-pass 
interferometric system based on the same satellite platform. 
Due to the high Ka-band frequencies, it is possible to be 
realized within a single satellite spacecraft.  
    The architecture of DIFFERENT radar module 
demonstrator consists of four main blocks: RF board, analog 
to digital converters (ADC) board and digital board (DGT). 
These blocks are connected through interfaces, as shown in 
Fig. 1. The radiating board is composed of 6 X-band and 96 
Ka-band (24 in elevation and 4 in azimuth) dual-polarized 
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Fig. 1. Architecture of radar module in DIFFERENT. 
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antenna elements. Every 2 × 2 Ka-band elements are active 
combined and form a channel, as shown in Fig. 2. The 
function of each RF MMIC unit is to down-convert the 
received V- and H-pol signals to an intermediate frequency 
(IF) band. The down-converted signals are processed in the 
digital backend block, which contains 60 ADCs. After 
digitization, the IF signals are pre-processed in the Digital 
Beamforming Network (DBFN). There are in total 4 × 2 
DBFN blocks integrated into 6 DGT boards. In each DBFN 
unit, the digitized data corresponding to all elevation channels, 
specific azimuth channel and polarization are weighted and 
combined.   
    The maximum power level for the X- and Ka-band sub-
systems is estimated using the radar equation for distributed 
targets, 

 鶏追 噺  鶏痛罫脹罫眺膏態購待酵椎潔に岫ね講岻戴詣捗 糾 完 】系脹岫剛岻】態】系眺岫剛岻】態穴剛貞 堅戴岫高岻嫌件券岫考沈岻 糾 な軽        岫な岻 

 
where P担 is the transmit power, G鐸 is the gain of the transmit 
antenna, G琢 is the gain of the receive antenna, ぢ is the 
wavelength, ぴ待  is the backscattering coefficient, ぷ丹 is the 
pulse length, c is the speed of light, L脱 is the losses component, C鐸岫奄岻┸ C琢岫奄岻 are transmit and receive antenna patterns, 奄 is 
the antenna pattern angle, r is the slant range, と辿 is the 
incidence angle of the signal, N is the number of reflector 
channels receiving the most of the power from the given 
direction. Using the (1), the maximum received power level by 
a single reflector channel can be estimated. To ensure a certain 
margin in the maximum power level, N = 1 is chosen. Thus, 
the results for both bands sub-systems of DIFFERENT are 
obtained. For X-band, the maximum and minimum receive 
power are -62.9 dBm and -90.66 dBm respectively and for Ka-
band, the results are -70.85 dBm and -90.9 dBm, respectively. 
    The minimum power levels are defined as the noise level, 
which can be evaluated according to the following expression,  
 

wn kTBP                                                           (2) 

 

where 倦 is Boltzmann constant, 劇 is the noise temperature, 稽栂 is the signal bandwidth. The noise level depends on the 
final hardware of the module. Therefore the minimum power 
levels given in this section must be considered.  

    The reflector system is adopted in the DBF-SAR system, 
which consists of a parabolic reflector and a feed array of 
receive elements, as shown in Fig. 3. To illuminate a given 
angular segment in elevation, the corresponding feed elements 
are activated. In this case, DBF consists of selecting a subset 
of the feed elements and summing up the corresponding data 
streams weighted with complex coefficients 拳沈岫建岻. In a 
general case, the output signal in this case is represented by, 
 嫌追勅岫建岻 噺 デ 拳沈岫建岻 糾 嫌沈岫建岻朝認賑沈退怠                                      (3) 
 嫌沈岫建岻 is the data stream of the channel 件, 拳沈岫建岻 is the time 
varying complex coefficient, 嫌追勅岫建岻 is the summed up output 
signal.  
    In the basic case, the complex weighting coefficients are 
equal to 0 (for non-activated feed elements) or 1 (for the 
activated feeds). Thus, the output signal is given by 
  嫌追勅岫建岻 噺 布 嫌沈岫建岻津袋朝尼迩禰

沈退津 ┸ 券 半  な┸ 券 髪 軽銚頂痛 判 軽追勅         岫ね岻 

 軽銚頂痛 is the given number of adjacent active elements. The 
digital threshold detectors is used to determine whether a data 
stream is passed to the summation or nulled. For the SAR 
processing it is important to record the summed signal at each 
instance in order to reconstruct the actual antenna pattern. 
    Fig. 4 shows the simulated radiation patterns of the 
illuminated parabolic reflector with the DBF post-processing 

 

Fig. 2. Block diagram of active summation of the RF frontend. 

 
Fig. 3. System architecture of the reflector based DBF-SAR. 
 

 
Fig. 4. Radiation patterns of different spacing between elements at 0° 
(dashed line) and 0.13° (solid line) with DBF post-processing used. 
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is applied. Two spacing of ど┻はの 糾 膏懲銚 and ど┻は 糾 膏懲銚 between 
two consecutive elements are investigated. It is observed that 
the patterns at different scan angles and spacing exhibit a 
similar illumination performance (gain and HPBW) due to the 
complex DBF weights are employed.  
 

III.  DIGITAL  BEAMFORMING NETWORK 

    The system architecture of the digital part of radar 
demonstrator is presented in Fig. 5. The DBFN is composed of 
the front-end and back-end network blocks. Each front-end 
module is connected to four ADCs, synchronization bus, one 
back-end chip and SPI bus. SPI serves the purpose of a 
configuration and LUT programing interface. The control unit 
manages the start/stop function and the changes of complex 
weight synchronization. The DBFN is a cluster of individual 
working DBF cores. The nodes are synchronized with each 
other using a synchronization interface. The length and type of 
acquisition process is configurable by the SPI interface. The 
system which covers 60 ADC converters requires 16 cores. 
The core can work in two modes: static mode and dynamic 

mode. For static mode, the weights are fixed during operation 
whereas the weights can be changed in the dynamic mode. 
Then microprocessor adds up sub-streams to form an output 
stream for a given azimuth. 
    Fig. 6 shows the block diagram of DGT board. The digital 
backend is composed of an ARM-based micro-processor, 
three ASICs and several modules of clock synthesizer, FTDI 
module (FIFO to USB), SMA connector and FMC connectors. 
The design has been verified using Verilog test bench, which 
is based on model-based design using MATLAB. Depending 
on the test scenario, one or more periods of input signals are 
provided to the ADC interfaces. The results of physical 
implementation are listed as follow: 

 Die Size : 6846.40 × 6846.40 たm 
 Num. of Instances: 625738 
 Number of Flip-Flops: 14901 
 TMR Flip-Flops: 4408 
 Chip Area: 47 mm² 
 SRAM Area: 15.08 mm² 
 Power consumption < 1.67 Watt 

The dynamic power consumption is based on stimuli of RTL 
simulation. It represents an average of over 10 cycles of the 
main active timing window of the laid out design.  
 

IV.  MMIC  AND SILICON TECHNOLOGY 

    The purpose of the analog monolithic microwave integrated 
circuit (MMIC) chips is to amplify and down-convert the 
received X- and Ka-band signals to IF band. The architecture 
of the X- and Ka-band low-noise converter (LNC) chips is 
shown in Fig. 7. The X-band LNC features a low noise 
amplifier (LNA), a mixer drove with an off-chip 9.6 GHz LO 
signal and an output buffer. Fig. 7(b) shows the block diagram 
of the Ka-band LNC. Each Ka-band LNC chip is connected to 
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four Ka-band antenna elements. Signal from each antenna 
element is fed to one low-noise amplifier (LNA) and these 
signals are summed on-chip using Wilkinson combiners. The 
Ka-band mixer down-converts the signal with an off-chip 
35.75 GHz LO signal. In the final stage, the down-converted 
signal will be filtered using the SMD filters. 
    The LNAs are designed to minimize the noise figure (NF) 
which is, with the gain, a critical parameter for the 
performance of the LNC. Compensation of the bond-wire for 
the RF signal is done on-chip. Bond-wire inductance is part of 
the input matching of LNAs for both X- and Ka-band. LNCs 
for both bands have single-ended RF signal inputs (50 Ohms), 
single-ended LO input and differential IF output (100 Ohms) 
to match ADC input impedance. The mixers feature Gilbert 
cell topology and output buffers feature common collector 
topology. LNA test chips were fabricated to measure their 
noise figures and the gain on-wafer. The LNA gains at both 
bands is another important performance driver as it should be 
high enough so that the contribution of the noise from the 
mixer and IF buffer can be negligible. Total noise figure of the 

 X-band LNC chip is expected to be 3.2 dB, whereas the 
measured noise figure of the LNA is around 2 dB at 20°C. At 
the Ka-band, the signal-to-noise ratio (SNR) and noise figure 
can be improved by 3 dB for each stage of signal summation 
with Wilkinson combiners. Therefore, the total SNR can be 
improved by 6 dB.  
    The X-band LNC draws 25 mA when biased at 3V. 
Simulated NF is 4.8 dB. As it can be observed in Fig. 8, 
simulated noise figure of the X-band LNA is 1.5 dB and 
measured 2.1 dB at room temperature. Total noise figure of 
the LNC is estimated to be 5.3 dB. Fig. 9 shows the measured 
conversion gain of the X-band LNC with different LO 
frequency. It is observed that a gain of 35.4 dB is achieved at 
9.6 GHz. As shown in Fig. 10, the measured conversion gain 
of X-band LNC with different temperature. A conversion gain 
changes by 1.3 dB from -20 to 80 °C. 
    Ka-band LNC draws 33 mA when biased with 3V. 
Measured and simulated noise figure of the Ka-band LNA at 
35.75 GHz is 2.3 dB and 2.7 dB at room temperature, as 
shown in Fig. 11. The better result shown by the 

 
Fig. 8. Measured X-band LNA noise figure at 25 and 50 °C. 
 

 
Fig. 9. Measured conversion gain of the X-band LNC vs. LO frequency. 
 

 
Fig. 10. Measured conversion gain of the X-band LNC vs. temperature.  
 

 
Fig. 11. Measured Ka-band LNA noise figure at -20, 20 and 80 °C. 

 

 
Fig. 12. Measured conversion gain of the Ka-band LNC vs. LO frequency. 
 

 
Fig. 13. Measured conversion gain of the Ka-band LNC vs. temperature.  
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 measurements is probably due to the ohmic losses which were 
overestimated in the simulations. Total noise figure of the Ka-
band LNC is estimated to be 0.6 dB. Fig. 12 shows the 
measured conversion gain of the Ka-band LNC chip. It is 
observed that 29.7 dB at 35.75 GHz is achieved. Fig. 13 shows 
the gain response with different temperature. As can be seen, 
the conversion gain drops by 4.5 dB when temperature 
changes from -20 to 80 °C. 
    DBFN baseband chip and MMICs are designed and 
manufactured using IHP’s technologies. Due to the demanding 
frequency range, high performance bipolar transistors are 
required for MMIC receiver implementation. As a 
consequence, 130 nm BiCMOS process has been selected 
which enables HBTs with fT/fmax = 250/300 GHz. The DBFN 
chip have less demanding performance and, for this reason, 
they have been manufactured using the low-cost 250 nm 
BiCMOS technology whose radhard space qualification is 
currently under investigation. 
 

V. RF BOARD  

A. Stack-Up Structure 

    The RF Board consists of a 16 layers PCB hybrid stack-up 
where the radiating elements, the MMICs and the distribution 
networks are integrated. Fig. 14 shows the stack-up 
configuration of the proposed RF board. The radiating 
elements are implemented using metal layers from L1 to L7. A 
laser cavity is realized in the upper part to accommodate 
MMICs. Each Ka-band patch antenna is fed by the striplines 
in L7 through the slots in L6. The X-band dipole is fed by 
microstrip on L5. The striplines and microstrips are connected   
to the microstrips on L1 via the vertical transition so as to give 
access the active devices (MMIC).  

B. Integrated Feed using X/Ka-Band Dual-Polarized Array  

1) X/Ka-band antenna element 
    Fig. 15 shows the configuration and the part of stack-up 
structures (L1 to L8) of the X- and Ka-band radiating 
elements.  The X-band radiating element is a pair of cross-
dipole antenna, which is printed on the both sides of a 
substrate, as shown in Fig. 15(a). The dipoles are proximately 

coupled using microstrips. The X-band antenna is designed to 
work at 9.6 GHz with bandwidth of 300 MHz. To further 
enhance the radiation performance, parasitic dipoles are added 
above the driven dipoles with a foam of 2 mm between them. 
The Ka-band radiating element is a patch antenna, which is 
fed using stripline through the slots in the ground plane as 
shown in Fig. 15(b). The patch is designed to work at 35.75 
GHz with the bandwidth over 1 GHz. The driven patch of Ka-
band and the feed of X-band are in the same layer. A pair of 
cross parasitic dipoles are added on the uppermost board for 
improving the performance of radiation and gain.  

2) X/Ka aperture-shared sub-array 
    Based on the X/Ka-band antenna elements design, an X/Ka-
band dual-polarized sub-array is prototyped and shown in Fig. 
16. It is composed of 2 X-band element and 4 × 10 Ka-band 
elements. Fig. 17 shows the simulated and measured S-
parameters at X-band and Ka-band respectively. It is observed 
that the X-band antenna exhibit a good impedance matching 
performance from 9.3 to 9.9 GHz, slightly wider than the 
simulated ones. The isolation is over 20 dB between the two 

 
Fig. 14. The stack-up of the proposed RF Board. 
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X-band driven 

dipoles

Microstrip feed line

Rogers 5880,  
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 (a)     
                                                    

Ka band 
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Fig. 15. The configuration and stack-up of radiating elements: (a) X-band, 
(b) Ka-band. 
 

 
(a)                                                        (b) 

Fig. 16. The prototype of the X/Ka-band dual-polarized subarray: (a) top 
view, (b) bottom view.  
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polarizations. A bandwidth from 34 to 38 GHz is achieved for 
Ka-band antenna.    
    Fig. 18 shows the normalized radiation patterns at 9.6 GHz 
and 35.75 GHz, respectively. It is observed excellent radiation 
performance at X- and Ka-band is achieved with the cross 
polarization discrimination (XPD) over 20 dB. It is noted that 

X-band channel (1 × 1 element) and Ka-band channel (2 × 2 
elements combined) are measured. 

3) SAR antenna system including the feed and reflector 
The radiation patterns of the antenna with the reflector 

included are also investigated. Fig. 19 shows the configuration 
of the antenna system, which is composed of a paraboloid 
reflector and a planar feed source. The feed source is the 
radiation patterns presented in Fig. 18. Fig. 20 presents the 
radiation patterns of the antenna system at 9.6 and 35.75 GHz. 
It is observed that when the reflector is illuminated with X-
band antenna, a gain of 40 dBi and the 3-dB beam width of 
0.80 are achieved. At the Ka-band operation, the gain is over 
56 dBi and the 3-dB beam width is approximately 0.20. 

 

VI.  CONCLUSION 

In this paper, a novel X/Ka-band dual-polarized DBF-SAR 
system within the DIFFERENT project is presented. The aim 
of DIFFERENT is to develop next-generation space-borne 
SAR systems applied in the future small or micro satellites. 
The novel SAR concept and techniques such as multi-static, 
digital beam-forming, reflector-based dual-band dual-
polarized aperture-shared antenna array and the integration are 
presented. Some simulated and measured results of the 
radiating board, RF frontend, MMIC and digital beamforming 
network are presented and discussed. The DBF-SAR system 
has low cost, compact size and high flexibility due to the DBF 
multi-static SAR architecture and highly integrated RF/digital 
subsystems, thus it is promising for future SAR missions.   
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