218 research outputs found

    Photonics and electronics integration in the HELIOS project

    Get PDF
    The objective of the European project HELIOS is to combine a photonic layer with a CMOS circuit by different innovative means, using microelectronics processes. Bonding of AWG + Ge Photodiodes on CMOS wafer is achieved

    Phylogenetic placement of environmental sequences using taxonomically reliable databases helps to rigorously assess dinophyte biodiversity in Bavarian lakes (Germany).

    Get PDF
    1. Reliable determination of organisms is a prerequisite to explore their spatial and temporal occurrence and to study their evolution, ecology, and dispersal. In Europe, Bavaria (Germany) provides an excellent study system for research on the origin and diversification of freshwater organisms including dinophytes, due to the presence of extensive lake districts and ice age river valleys. Bavarian freshwater environments are ecologically diverse and range from deep nutrient‐poor mountain lakes to shallow nutrient‐rich lakes and ponds. 2. We obtained amplicon sequence data (V4 region of small subunit‐rRNA, c. 410 bp long) from environmental samples collected at 11 sites in Upper Bavaria. We found 186 operational taxonomic units (OTUs) associated with Dinophyceae that were further classified by means of a phylogenetic placement approach. 3. The maximum likelihood tree inferred from a well‐curated reference alignment comprised a systematically representative set of 251 dinophytes, covering the currently known molecular diversity and OTUs linked to type material if possible. Environmental OTUs were scattered across the reference tree, but accumulated mostly in freshwater lineages, with 79% of OTUs placed in either Apocalathium, Ceratium, or Peridinium, the most frequently encountered taxa in Bavaria based on morphology. 4. Twenty‐one Bavarian OTUs showed identical sequences to already known and vouchered accessions, two of which are linked to type material, namely Palatinus apiculatus and Theleodinium calcisporum. Particularly within Peridiniaceae, delimitation of Peridinium species was based on the intraspecific sequence variation. 5. Our approach indicates that high‐throughput sequencing of environmental samples is effective for reliable determination of dinophyte species in Bavarian lakes. We further discuss the importance of well‐curated reference databases that remain to be developed in the future

    WELLFOCUS PPT – modified positive psychotherapy to improve well-being in psychosis: study protocol for a pilot randomised controlled trial

    Get PDF
    BACKGROUND: The promotion of well-being is an important goal of recovery oriented mental health services. No structured, evidence-based intervention exists that aims to increase the well-being in people with severe mental illness such as psychosis. Positive psychotherapy (PPT) is a promising intervention for this goal. Standard PPT was adapted for use with people with psychosis in the UK following the Medical Research Council framework for developing and testing complex interventions, resulting in the WELLFOCUS Model describing the intended impact of WELLFOCUS PPT. This study aims to test the WELLFOCUS Model, by piloting the intervention, trial processes, and evaluation strategy. METHODS/DESIGN: This study is a non-blinded pragmatic pilot RCT comparing WELLFOCUS PPT provided as an 11-session group therapy in addition to treatment as usual to treatment as usual alone. Inclusion criteria are adults (aged 18–65 years) with a main diagnosis of psychosis who use mental health services. A target sample of 80 service users with psychosis are recruited from mental health services across the South London and Maudsley NHS Foundation Trust. Participants are randomised in blocks to the intervention and control group. WELLFOCUS PPT is provided to groups by specifically trained and supervised local therapists and members of the research team. Assessments are conducted before randomisation and after the group intervention. The primary outcome measure is well-being assessed by the Warwick-Edinburgh Mental Well-being Scale. Secondary outcomes include good feelings, symptom relief, connectedness, hope, self-worth, empowerment, and meaning. Process evaluation using data collected during the group intervention, post-intervention individual interviews and focus groups with participants, and interviews with trial therapists will complement quantitative outcome data. DISCUSSION: This study will provide data on the feasibility of the intervention and identify necessary adaptations. It will allow optimisation of trial processes and inform the evaluation strategy, including sample size calculation, for a future definitive RCT. TRIAL REGISTRATION: Current Controlled Trials ISRCTN04199273 – WELLFOCUS study: an intervention to improve well-being in people with psychosis, Date registered: 27 March 2013, first participant randomised on 26 April 2013

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    The Gated X-ray Detector for the National Ignition Facility

    Get PDF
    Two new gated x-ray imaging cameras have recently been designed, constructed and delivered to the National Ignition Facility in Livermore, CA. These Gated X-ray Detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significant different from earlier generations of gated x-ray images due in parts to an innovative impendence matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution and no detectable impendence reflections

    Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment

    Get PDF
    The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium ÎČ\beta-decay endpoint region with a sensitivity on mÎœm_\nu of 0.2 \,eV/c2^2 (90% CL). For this purpose, the ÎČ\beta-electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6 \,keV. A dominant systematic effect of the response of the experimental setup is the energy loss of ÎČ\beta-electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the \linebreak energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T2_2 gas mixture at 30 \,K, as used in the first KATRIN neutrino mass analyses, as well as a D2_2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of σ(mÎœ2)<10−2 eV2\sigma(m_\nu^2)<10^{-2}\,\mathrm{eV}^2 [arXiv:2101.05253] in the KATRIN neutrino-mass measurement to a subdominant level.Comment: 12 figures, 18 pages; to be submitted to EPJ

    Direct neutrino-mass measurement with sub-electronvolt sensitivity

    Get PDF
    • 

    corecore