867 research outputs found

    Klauder's coherent states for the radial Coulomb problem in a uniformly curved space and their flat-space limits

    Full text link
    First a set of coherent states a la Klauder is formally constructed for the Coulomb problem in a curved space of constant curvature. Then the flat-space limit is taken to reduce the set for the radial Coulomb problem to a set of hydrogen atom coherent states corresponding to both the discrete and the continuous portions of the spectrum for a fixed \ell sector.Comment: 10 pages, no figure

    Discovery of an extended G giant chromosphere in the 2019 eclipse of γ Per

    Get PDF
    The November 2019 eclipse of γ Per was a rare opportunity to seek evidence for a chromosphere of the G8 giant, hitherto suspected but not detected. Twenty-nine years after the only other observed eclipse, we aim to find chromospheric absorption in the strong Caa II H&K lines, and to determine its column densities and scale height. Using the Telescopio Internacional de Guanajuato Rob\uf3tico-Espectrosc\uf3pico (TIGRE) in Guanajuato (central Mexico) before, during and after the 8 days of total eclipse, we obtained good S/N spectra of the G8 giant alone and composite spectra of the partial phases, near eclipse and far from eclipse. In the near UV of the Caa II H&K and H\ucfμ lines, the G giant spectrum that was adequately scaled was subtracted from the composite spectra in partial phases, near and far from eclipse, to obtain the A3 companion spectra with and without traces of chromospheric absorption. In addition, we used PHOENIX full non-local thermodynamic equilibrium model atmospheres on the blue A star spectrum, iSpec spectral analysis of the red G giant spectrum, and evolution tracks to study both components of γ Per. For the first time, we present evidence for this rare type of a not very extended G giant chromosphere, reaching out about half of an A-star radius (~1.5 Gm) with a scale height of only 0.17 Gm. By its location in the Hertzsprung-Russell diagram, the γ Per G8 giant is very close to the onset of more extended chromospheres. Furthermore, we show that this giant has a rather inactive chromosphere, and a recent 5 ksec XMM pointing reveals only a very faint, low-energy corona. While the γ Per primary has a mass of ~3.6 M\u27, and its A3 companion has one of ~2.4 M\u27, the latter is too cool (8400 \ub1 300 K), which is too evolved on the main sequence to be the same age as the primary. The high eccentricity of the 5329.08 days long-period orbit may therefore be reminiscent of a rare capture event. Using the eclipse method, we resolve a pivotal case of a G giant chromosphere, which seems to represent a low-gravity analogue of the inactive Sun. A systematic change of giant chromospheric extent by Hertzsprung-Russell diagram position is confirmed. Compared to the solar chromosphere, the density scale height increases with gravity by \uc9\ua1\u271.5

    Design, fabrication, and characterization of a highly nonlinear few-mode fiber

    Get PDF
    We present the design, fabrication, and characterization of a highly nonlinear few-mode fiber (HNL-FMF) with an intermodal nonlinear coefficient of 2.8 (W \ub7 km)−1, which to the best of our knowledge is the highest reported to date. The graded-index circular core fiber supports two mode groups (MGs) with six eigenmodes and is highly doped with germanium. This breaks the mode degeneracy within the higher-order MG, leading to different group velocities among corresponding eigenmodes. Thus, the HNL-FMF can support multiple intermodal four-wave mixing processes between the two MGs at the same time. In a proof-of-concept experiment, we demonstrate simultaneous intermodal wavelength conversions among three eigenmodes of the HNL-FMF over the C band

    Target mass number dependence of subthreshold antiproton production in proton-, deuteron- and alpha-particle-induced reactions

    Full text link
    Data from KEK on subthreshold \bar{\mrm{p}} as well as on π±\pi^\pm and \mrm{K}^\pm production in proton-, deuteron- and α\alpha-induced reactions at energies between 2.0 and 12.0 A GeV for C, Cu and Pb targets are described within a unified approach. We use a model which considers a nuclear reaction as an incoherent sum over collisions of varying numbers of projectile and target nucleons. It samples complete events and thus allows for the simultaneous consideration of all final particles including the decay products of the nuclear residues. The enormous enhancement of the \bar{\mrm{p}} cross section, as well as the moderate increase of meson production in deuteron and α\alpha induced compared to proton-induced reactions, is well reproduced for all target nuclei. In our approach, the observed enhancement near the production threshold is mainly due to the contributions from the interactions of few-nucleon clusters by simultaneously considering fragmentation processes of the nuclear residues. The ability of the model to reproduce the target mass dependence may be considered as a further proof of the validity of the cluster concept.Comment: 9 pages, 4 figure

    High spectral efficiency coherent superchannel transmission with soliton microcombs

    Get PDF
    Spectral efficiency (SE) is one of the key metrics for optical communication networks. An important building block for its maximization are optical superchannels, channels that are composed of several subchannels with an aggregate bandwidth larger than the bandwidth of the detector electronics. Superchannels which are routed through the network as a single entity, together with flex-grid routing, allow to more efficiently utilize available bandwidth and eliminate the guard-bands between channels, thus increasing spectral efficiency. In contrast to traditional wavelength division multiplexing (WDM) channels, subchannel spacing and thus superchannel SE is governed by the linewidth and stability of the frequency spacing of the transmitter lasers. Integrated optical frequency combs, particulary the parametrically generated so-called microcombs, which provide optical lines on a fixed frequency grid are a promising solution for low power superchannel laser sources that allow to minimize the SE loss from suboptimal channel spacing. However, it is extremely challenging to realize micro-combs with sufficient line power, coherence and line spacing that is compatible with electronic bandwidths. Because the line-spacing generated by most devices is above 40 GHz, demonstrations often rely on additional electro-optic frequency shifter or divider stages to avoid digital-to-analog-converter (DAC) performance degradation when operating at high symbol rates. Here we demonstrate a 50-line superchannel from a single 22 GHz line spacing soliton microcomb. We demonstrate 12 Tb/s throughput with > 10 bits/s/Hz SE efficiency after 80 km transmission and 8 Tb/s throughput (SE > 6 bits/s/Hz) after 2100 km, proving the feasibility and benefits of generating high signal quality, broadband waveforms directly from the output of a micro-scale device with a symbol rate close to the comb repetition rate

    Factors associated with first return to work and sick leave durations in workers with common mental disorders

    Get PDF
    Background: Associations are examined between socio-demographic, medical, work-related and organizational factors and the moment of first return to work (RTW) (within or after 6 weeks of sick leave) and total sick leave duration in sick leave spells due to common mental disorders. Methods: Data are derived from a Dutch database, build to provide reference data for sick leave duration for various medical conditions. The cases in this study were entered in 2004 and 2005 by specially trained occupational health physicians, based on the physician's assessment of medical and other factors. Odds ratios for first RTW and sick leave durations are calculated in logistic regression models. Results: Burnout, depression and anxiety disorder are associated with longer sick leave duration. Similar, but weaker associations were found for female sex, being a teacher, small company size and moderate or high psychosocial hazard. Distress is associated with shorter sick leave duration. Medical factors, psychosocial hazard and company size are also and analogously associated with first RTW. Part-time work is associated with delayed first RTW. The strength of the associations varies for various factors and for different sick leave durations. Conclusion: The medical diagnosis has a strong relation with the moment of first RTW and the duration of sick leave spells in mental disorders, but the influence of demographic and work-related factors should not be neglected

    Quantum Theory and Time Asymmetry

    Full text link
    The relation between quantum measurement and thermodynamically irreversible processes is investigated. The reduction of the state vector is fundamentally asymmetric in time and shows an observer-relatedness which may explain the double interpretation of the state vector as a representation of physical states as well as of information about them. The concept of relevance being used in all statistical theories of irreversible thermodynamics is shown to be based on the same observer-relatedness. Quantum theories of irreversible processes implicitly use an objectivized process of state vector reduction. The conditions for the reduction are discussed, and I speculate that the final (subjective) observer system might even be carried by a spacetime point.Comment: Latex version of a paper published in 1979 (with minor revisions), 18 page

    Quantifying decoherence in continuous variable systems

    Full text link
    We present a detailed report on the decoherence of quantum states of continuous variable systems under the action of a quantum optical master equation resulting from the interaction with general Gaussian uncorrelated environments. The rate of decoherence is quantified by relating it to the decay rates of various, complementary measures of the quantum nature of a state, such as the purity, some nonclassicality indicators in phase space and, for two-mode states, entanglement measures and total correlations between the modes. Different sets of physically relevant initial configurations are considered, including one- and two-mode Gaussian states, number states, and coherent superpositions. Our analysis shows that, generally, the use of initially squeezed configurations does not help to preserve the coherence of Gaussian states, whereas it can be effective in protecting coherent superpositions of both number states and Gaussian wave packets.Comment: Review article; 36 pages, 19 figures; typos corrected, references adde
    corecore