We present a detailed report on the decoherence of quantum states of
continuous variable systems under the action of a quantum optical master
equation resulting from the interaction with general Gaussian uncorrelated
environments. The rate of decoherence is quantified by relating it to the decay
rates of various, complementary measures of the quantum nature of a state, such
as the purity, some nonclassicality indicators in phase space and, for two-mode
states, entanglement measures and total correlations between the modes.
Different sets of physically relevant initial configurations are considered,
including one- and two-mode Gaussian states, number states, and coherent
superpositions. Our analysis shows that, generally, the use of initially
squeezed configurations does not help to preserve the coherence of Gaussian
states, whereas it can be effective in protecting coherent superpositions of
both number states and Gaussian wave packets.Comment: Review article; 36 pages, 19 figures; typos corrected, references
adde