1,232 research outputs found

    Fluidization of granular media wetted by liquid 4^4He

    Full text link
    We explore experimentally the fluidization of vertically agitated PMMA spheres wetted by liquid 4^4He. By controlling the temperature around the λ\lambda point we change the properties of the wetting liquid from a normal fluid (helium I) to a superfluid (helium II). For wetting by helium I, the critical acceleration for fluidization (Γc\Gamma_c) shows a steep increase close to the saturation of the vapor pressure in the sample cell. For helium II wetting, Γc\Gamma_c starts to increase at about 75% saturation, indicating that capillary bridges are enhanced by the superflow of unsaturated helium film. Above saturation, Γc\Gamma_c enters a plateau regime where the capillary force between particles is independent of the bridge volume. The plateau value is found to vary with temperature and shows a peak at 2.1 K, which we attribute to the influence of the specific heat of liquid helium.Comment: 4 pages, 3 figures, Accepted by Phys. Rev. E as a rapid communicatio

    Capturing regional differences in flood vulnerability improves flood loss estimation

    Get PDF
    Flood vulnerability is quantified by loss models which are developed using either empirical or synthetic approaches. In reality, processes influencing flood risk are stochastic and loss predictions bear significant uncertainty, especially due to differences in vulnerability across exposed objects and regions. However, many state-of-the-art flood loss models are deterministic, i.e., they do not account for data and model uncertainty. The Bayesian Data-Driven Synthetic (BDDS) model was one of the first approaches that used empirical data to reduce the prediction errors at object-level and enhance the reliability of synthetic flood loss models. However, the BDDS model does not account for regional differences in vulnerability which may result in over-/under-estimation of losses in some regions. In order to overcome this limitation, this study introduces a hierarchical parameterization of the BDDS model which enhances synthetic flood loss model predictions by quantifying regional differences in vulnerability. The hierarchical parameterization makes optimal use of the process information contained in the overall data set for the various regional applications, so that it is particularly suitable for cases in which only a small amount of empirical data is available. The implementation and performance of the hierarchical parametrization is demonstrated with the Multi-Colored Manual (MCM) loss functions and empirical damage dataset from the UK consisting of residential buildings from the regions Appleby, Carlisle, Kendal and Cockermouth that suffered losses during the 2015 flood event. The developed model improves prediction accuracy of flood loss compared to MCM by reducing the absolute error and bias by at least 23 and 90%, respectively. The model reliability in terms of hit rate (i.e., the probability that the observed value lies in the 90% high density interval of predictions) is 88% for residential buildings from the same regions used for calibration and 73% for residential buildings from new regions. The approach is of high practical relevance for all regions where only limited amounts of empirical flood loss data is available

    Potential Energy Surface for H_2 Dissociation over Pd(100)

    Full text link
    The potential energy surface (PES) of dissociative adsorption of H_2 on Pd(100) is investigated using density functional theory and the full-potential linear augmented plane wave (FP-LAPW) method. Several dissociation pathways are identified which have a vanishing energy barrier. A pronounced dependence of the potential energy on ``cartwheel'' rotations of the molecular axis is found. The calculated PES shows no indication of the presence of a precursor state in front of the surface. Both results indicate that steering effects determine the observed decrease of the sticking coefficient at low energies of the H_2 molecules. We show that the topology of the PES is related to the dependence of the covalent H(s)-Pd(d) interactions on the orientation of the H_2 molecule.Comment: RevTeX, 8 pages, 5 figures in uufiles forma

    A consistent approach for probabilistic residential flood loss modeling in Europe

    Get PDF
    In view of globally increasing flood losses, a significantly improved and more efficient flood risk management and adaptation policy are needed. One prerequisite is reliable risk assessments on the continental scale. Flood loss modeling and risk assessments for Europe are until now based on regional approaches using deterministic depth‐damage functions. Uncertainties associated with the risk estimation are hardly known. To reduce these shortcomings, we present a novel, consistent approach for probabilistic flood loss modeling for Europe, based on the upscaling of the Bayesian Network Flood Loss Estimation MOdel for the private sector, BN‐FLEMOps. The model is applied on the mesoscale in the whole of Europe and can be adapted to regional situations. BN‐FLEMOps is validated in three case studies in Italy, Austria, and Germany. The officially reported loss figures of the past flood events are within the 95% quantile range of the probabilistic loss estimation, for all three case studies. In the Italian, Austrian, and German case studies, the median loss estimate shows an overestimation by 28% (2.1 million euro) and 305% (5.8 million euro) and an underestimation by 43% (104 million euro), respectively. In two of the three case studies, the performance of the model improved, when updated with empirical damage data from the area of interest. This approach represents a step forward in European wide flood risk modeling, since it delivers consistent flood loss estimates and inherently provides uncertainty information. Further validation and tests with respect to adapting the model to different European regions are recommended

    Development and assessment of uni- and multivariable flood loss models for Emilia-Romagna (Italy)

    Get PDF
    Flood loss models are one important source of uncertainty in flood risk assessments. Many countries experience sparseness or absence of comprehensive high-quality flood loss data, which is often rooted in a lack of protocols and reference procedures for compiling loss datasets after flood events. Such data are an important reference for developing and validating flood loss models. We consider the Secchia River flood event of January 2014, when a sudden levee breach caused the inundation of nearly 52km2 in northern Italy. After this event local authorities collected a comprehensive flood loss dataset of affected private households including building footprints and structures and damages to buildings and contents. The dataset was enriched with further information compiled by us, including economic building values, maximum water depths, velocities and flood durations for each building. By analyzing this dataset we tackle the problem of flood damage estimation in Emilia-Romagna (Italy) by identifying empirical uni- and multivariable loss models for residential buildings and contents. The accuracy of the proposed models is compared with that of several flood damage models reported in the literature, providing additional insights into the transferability of the models among different contexts. Our results show that (1) even simple univariable damage models based on local data are significantly more accurate than literature models derived for different contexts; (2) multivariable models that consider several explanatory variables outperform univariable models, which use only water depth. However, multivariable models can only be effectively developed and applied if sufficient and detailed information is available

    Contribution of the nucleon-hyperon reaction channels to K−^- production in proton-nucleus collisions

    Full text link
    The cross sections for producing K−^- mesons in nucleon-hyperon elementary processes are estimated assuming one-pion exchange and using the experimentally known pion-hyperon cross sections. The results are implemented in a transport model which is applied to calculation of proton-nucleus collisions. In significant difference to earlier estimates for heavy-ion collisions the inclusion of the nucleon-hyperon cross section roughly doubles the K−^- production in near-threshold proton-nucleus collisions

    The high-energy environment in the super-earth system CoRoT-7

    Full text link
    High-energy irradiation of exoplanets has been identified to be a key influence on the stability of these planets' atmospheres. So far, irradiation-driven mass-loss has been observed only in two Hot Jupiters, and the observational data remain even more sparse in the super-earth regime. We present an investigation of the high-energy emission in the CoRoT-7 system, which hosts the first known transiting super-earth. To characterize the high-energy XUV radiation field into which the rocky planets CoRoT-7b and CoRoT-7c are immersed, we analyzed a 25 ks XMM-Newton observation of the host star. Our analysis yields the first clear (3.5 sigma) X-ray detection of CoRoT-7. We determine a coronal temperature of ca. 3 MK and an X-ray luminosity of 3*10^28 erg/s. The level of XUV irradiation on CoRoT-7b amounts to ca. 37000 erg/cm^2/s. Current theories for planetary evaporation can only provide an order-of-magnitude estimate for the planetary mass loss; assuming that CoRoT-7b has formed as a rocky planet, we estimate that CoRoT-7b evaporates at a rate of about 1.3*10^11 g/s and has lost ca. 4-10 earth masses in total.Comment: 5 pages, accepted for publication by Astronomy & Astrophysic

    The clockfront and wavefront model revisited

    Get PDF
    The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior–posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species

    Single ionization of atoms in intense laser pulses: Evolution from multiphoton to tunnel ionization

    Get PDF
    We present results of high resolution fully differential measurements on single ionization of He, Ne, and Ar by 7-25 fs linearly polarized 800nm laser pulses at intensities of up to 2.1015 W/cm2. Using a 'Reaction-Microscope' we were able to trace signatures of multiphoton ionization deep into the tunnelling regime. Surprisingly, in the low-energy electron spectra we observed several features (absence of the ponderomotive shifts, splitting of the peaks, their degeneration for few-cycle laser pulses) typical for resonantly-enhanced ionization. Other remarkable features, as the sharp cusp-like momentum distributions in the direction perpendicular to the laser field or the observed minima at zero longitudinal momentum for He and Ne, can be reproduced by semiclassical models, where the electron motion in the combined laser and Coulomb field is treated classically after the tunnelling
    • 

    corecore