208 research outputs found

    The structure of fluid trifluoromethane and methylfluoride

    Full text link
    We present hard X-ray and neutron diffraction measurements on the polar fluorocarbons HCF3 and H3CF under supercritical conditions and for a range of molecular densities spanning about a factor of ten. The Levesque-Weiss-Reatto inversion scheme has been used to deduce the site-site potentials underlying the measured partial pair distribution functions. The orientational correlations between adjacent fluorocarbon molecules -- which are characterized by quite large dipole moments but no tendency to form hydrogen bonds -- are small compared to a highly polar system like fluid hydrogen chloride. In fact, the orientational correlations in HCF3 and H3CF are found to be nearly as small as those of fluid CF4, a fluorocarbon with no dipole moment.Comment: 11 pages, 9 figure

    An electrostatically defined serial triple quantum dot charged with few electrons

    Full text link
    A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs heterostructure is characterized by using a nearby quantum point contact as charge detector. Ground state stability diagrams demonstrate control in the regime of few electrons charging the TQD. An electrostatic model is developed to determine the ground state charge configurations of the TQD. Numerical calculations are compared with experimental results. In addition, the tunneling conductance through all three quantum dots in series is studied. Quantum cellular automata processes are identified, which are where charge reconfiguration between two dots occurs in response to the addition of an electron in the third dot.Comment: 12 pages, 9 figure

    All-electron GW calculation based on the LAPW method: application to wurtzite ZnO

    Full text link
    We present a new, all-electron implementation of the GW approximation and apply it to wurtzite ZnO. Eigenfunctions computed in the local-density approximation (LDA) by the full-potential linearized augmented-plane-wave (LAPW) or the linearized muffin-tin-orbital (LMTO) method supply the input for generating the Green function G and the screened Coulomb interaction W. A mixed basis is used for the expansion of W, consisting of plane waves in the interstitial region and augmented-wavefunction products in the augmentation-sphere regions. The frequency-dependence of the dielectric function is computed within the random-phase approximation (RPA), without a plasmon-pole approximation. The Zn 3d orbitals are treated as valence states within the LDA; both core and valence states are included in the self-energy calculation. The calculated bandgap is smaller than experiment by about 1eV, in contrast to previously reported GW results. Self-energy corrections are orbital-dependent, and push down the deep O 2s and Zn 3d levels by about 1eV relative to the LDA. The d level shifts closer to experiment but the size of shift is underestimated, suggesting that the RPA overscreens localized states.Comment: 10 pages, 3 figures, submitted to Phys. Rev.

    Anomalous relaxations and chemical trends at III-V nitride non-polar surfaces

    Full text link
    Relaxations at nonpolar surfaces of III-V compounds result from a competition between dehybridization and charge transfer. First principles calculations for the (110) and (101ˉ\bar{1}0) faces of zincblende and wurtzite AlN, GaN and InN reveal an anomalous behavior as compared with ordinary III-V semiconductors. Additional calculations for GaAs and ZnO suggest close analogies with the latter. We interpret our results in terms of the larger ionicity (charge asymmetry) and bonding strength (cohesive energy) in the nitrides with respect to other III-V compounds, both essentially due to the strong valence potential and absence of pp core states in the lighter anion. The same interpretation applies to Zn II-VI compounds.Comment: RevTeX 7 pages, 8 figures included; also available at http://kalix.dsf.unica.it/preprints/; improved after revie

    Cluster structures on quantum coordinate rings

    Full text link
    We show that the quantum coordinate ring of the unipotent subgroup N(w) of a symmetric Kac-Moody group G associated with a Weyl group element w has the structure of a quantum cluster algebra. This quantum cluster structure arises naturally from a subcategory C_w of the module category of the corresponding preprojective algebra. An important ingredient of the proof is a system of quantum determinantal identities which can be viewed as a q-analogue of a T-system. In case G is a simple algebraic group of type A, D, E, we deduce from these results that the quantum coordinate ring of an open cell of a partial flag variety attached to G also has a cluster structure.Comment: v2: minor corrections. v3: references updated, final version to appear in Selecta Mathematic

    First principles study of strain/electronic interplay in ZnO; Stress and temperature dependence of the piezoelectric constants

    Get PDF
    We present a first-principles study of the relationship between stress, temperature and electronic properties in piezoelectric ZnO. Our method is a plane wave pseudopotential implementation of density functional theory and density functional linear response within the local density approximation. We observe marked changes in the piezoelectric and dielectric constants when the material is distorted. This stress dependence is the result of strong, bond length dependent, hybridization between the O 2p2p and Zn 3d3d electrons. Our results indicate that fine tuning of the piezoelectric properties for specific device applications can be achieved by control of the ZnO lattice constant, for example by epitaxial growth on an appropriate substrate.Comment: accepted for publication in Phys. Rev.

    Cluster algebras in algebraic Lie theory

    Full text link
    We survey some recent constructions of cluster algebra structures on coordinate rings of unipotent subgroups and unipotent cells of Kac-Moody groups. We also review a quantized version of these results.Comment: Invited survey; to appear in Transformation Group

    The liquid-vapor interface of an ionic fluid

    Full text link
    We investigate the liquid-vapor interface of the restricted primitive model (RPM) for an ionic fluid using a density-functional approximation based on correlation functions of the homogeneous fluid as obtained from the mean-spherical approximation (MSA). In the limit of a homogeneous fluid our approach yields the well-known MSA (energy) equation of state. The ionic interfacial density profiles, which for the RPM are identical for both species, have a shape similar to those of simple atomic fluids in that the decay towards the bulk values is more rapid on the vapor side than on the liquid side. This is the opposite asymmetry of the decay to that found in earlier calculations for the RPM based on a square-gradient theory. The width of the interface is, for a wide range of temperatures, approximately four times the second moment correlation length of the liquid phase. We discuss the magnitude and temperature dependence of the surface tension, and argue that for temperatures near the triple point the ratio of the dimensionless surface tension and critical temperature is much smaller for the RPM than for simple atomic fluids.Comment: 6 postscript figures, submitted to Phys. Rev.

    Toward polarized antiprotons: Machine development for spin-filtering experiments

    Get PDF
    The paper describes the commissioning of the experimental equipment and the machine studies required for the first spin-filtering experiment with protons at a beam kinetic energy of 49.349.3\,MeV in COSY. The implementation of a low-β\beta insertion made it possible to achieve beam lifetimes of τb=8000\tau_{\rm{b}}=8000\,s in the presence of a dense polarized hydrogen storage-cell target of areal density dt=(5.5±0.2)×1013atoms/cm2d_{\rm t}=(5.5\pm 0.2)\times 10^{13}\,\mathrm{atoms/cm^{2}}. The developed techniques can be directly applied to antiproton machines and allow for the determination of the spin-dependent pˉp\bar{p}p cross sections via spin filtering

    Criticality in confined ionic fluids

    Full text link
    A theory of a confined two dimensional electrolyte is presented. The positive and negative ions, interacting by a 1/r1/r potential, are constrained to move on an interface separating two solvents with dielectric constants ϵ1\epsilon_1 and ϵ2\epsilon_2. It is shown that the Debye-H\"uckel type of theory predicts that the this 2d Coulomb fluid should undergo a phase separation into a coexisting liquid (high density) and gas (low density) phases. We argue, however, that the formation of polymer-like chains of alternating positive and negative ions can prevent this phase transition from taking place.Comment: RevTex, no figures, in press Phys. Rev.
    corecore