1,945 research outputs found

    Comparative genetic resistance to Ascaridia galli infections of 4 different commercial layer-lines

    Get PDF
    1. The objective of the study was to compare the establishment and effect of Ascaridia galli infections in 4 different layer-lines. 2. A total of 160 birds comprising 4 different commercial layer-lines, ISA Brown, New Hampshire, Skalborg and a cross of New Hampshire(NH) and Skalborg (Sk), were infected with A. galli eggs. The birds were examined for the presence of parasite eggs and parasites at weeks 3, 6 and 9 post infection (pi). 3. At week 6 pi the chickens of the NH line harboured more larvae compared with the three other lines. The Sk line chickens excreted more A. galli eggs throughout the study compared with the other lines. Female worms in the Sk line were more fecund than the worms in the other lines. Male and female worms recovered from the Sk line at week 9 pi were longer. Male worms recovered from the NH line 6 weeks pi were shorter than male worms from the other lines. Female worms recovered from the NH line were shorter than the female worms from the ISA line and the Sk line. No differences were seen in weight gain among the 4 lines. 4. The results suggest that genetic factors are involved in the establishment and survival of A. galli in the intestine of layers. Further studies are needed to elucidate the genetic mechanisms behind the observed parasitological findings

    Three-dimensional stability of the solar tachocline

    Full text link
    The three-dimensional, hydrodynamic stability of the solar tachocline is investigated based on a rotation profile as a function of both latitude and radius. By varying the amplitude of the latitudinal differential rotation, we find linear stability limits at various Reynolds numbers by numerical computations. We repeated the computations with different latitudinal and radial dependences of the angular velocity. The stability limits are all higher than those previously found from two-dimensional approximations and higher than the shear expected in the Sun. It is concluded that any part of the tachocline which is radiative is hydrodynamically stable against small perturbations.Comment: 6 pages, 8 figures, accepted by Astron. & Astrophy

    How much more can sunspots tell us about the solar dynamo?

    Get PDF
    Sunspot observations inspired solar dynamo theory and continue to do so. Simply counting them established the sunspot cycle and its period. Latitudinal distributions introduced the tough constraint that the source of sunspots moves equator-ward as the cycle progresses. Observations of Hale's polarity law mandated hemispheric asymmetry. How much more can sunspots tell us about the solar dynamo? We draw attention to a few outstanding questions raised by inherent sunspot properties. Namely, how to explain sunspot rotation rates, the incoherence of follower spots, the longitudinal spacing of sunspot groups, and brightness trends within a given sunspot cycle. After reviewing the first several topics, we then present new results on the brightness of sunspots in Cycle 24 as observed with the Helioseismic Magnetic Imager (HMI). We compare these results to the sunspot brightness observed in Cycle 23 with the Michelson Doppler Imager (MDI). Next, we compare the minimum intensities of five sunspots simultaneously observed by the Hinode Solar Optical Telescope Spectropolarimeter (SOT-SP) and HMI to verify that the minimum brightness of sunspot umbrae correlates well to the maximum field strength. We then examine 90 and 52 sunspots in the north and south hemisphere, respectively, from 2010 - 2012. Finally, we conclude that the average maximum field strengths of umbra 40 Carrington Rotations into Cycle 24 are 2690 Gauss, virtually indistinguishable from the 2660 Gauss value observed at a similar time in Cycle 23 with MDI

    A method for the estimation of p-mode parameters from averaged solar oscillation power spectra

    Full text link
    A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from mm-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we have computed using the WMLTP method on the 66-day long 2010 SOHO/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion we developed a new procedure for the identification and correction of outliers in a frequency data set. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model~S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle~24 during mid-2010

    On the solar origin of the signal at 220.7microHz: A possible component of a g mode?

    Full text link
    Gravity modes in the Sun have been the object of a long and difficult search in recent decades. Thanks to the data accumulated with the last generation of instruments (BiSON, GONG and three helioseismic instruments aboard SoHO), scientists have been able to find signatures of their presence. However, the individual detection of such modes remains evasive. In this article, we study the signal at 220.7 microHz which is a peak that is present in most of the helioseismic data of the last 10 years. This signal has already been identified as being one component of a g-mode candidate detected in the GOLF Doppler velocity signal. The nature of this peak is studied in particular using the VIRGO/SPM instrument aboard SoHO. First we analyse all the available instrumental data of VIRGO and SoHO (housekeeping) to reject any possible instrumental origin. No relation was found, implying that the signal has a solar origin. Using Monte Carlo simulations, we find, with more than 99% confidence level, that the signal found in VIRGO/SPM is very unlikely to be due to pure noise.Comment: Accepted for publication in ApJSS. 19 pages, 9 figure

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Optimization of the Spectral Line Inversion Code

    Full text link
    The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne-Eddington spectral line inversion code used to determine the magnetic and thermodynamic parameters of the solar photosphere from observations of the Stokes vector in the 6173 A Fe I line by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report on the modifications made to the original VFISV inversion code in order to optimize its operation within the HMI data pipeline and provide the smoothest solution in active regions. The changes either sped up the computation or reduced the frequency with which the algorithm failed to converge to a satisfactory solution. Additionally, coding bugs which were detected and fixed in the original VFISV release, are reported here.Comment: Accepted for publication in Solar Physic

    Is the solar convection zone in strict thermal wind balance?

    Full text link
    Context: The solar rotation profile is conical rather than cylindrical as one could expect from classical rotating fluid dynamics (e.g. Taylor-Proudman theorem). Thermal coupling to the tachocline, baroclinic effects and latitudinal transport of heat have been advocated to explain this peculiar state of rotation. Aims: To test the validity of thermal wind balance in the solar convection zone using helioseismic inversions for both the angular velocity and fluctuations in entropy and temperature. Methods: Entropy and temperature fluctuations obtained from 3-D hydrodynamical numerical simulations of the solar convection zone are compared with solar profiles obtained from helioseismic inversions. Results: The temperature and entropy fluctuations in 3-D numerical simulations have smaller amplitude in the bulk of the solar convection zone than those found from seismic inversions. Seismic inversion find variations of temperature from about 1 K at the surface up to 100 K at the base of the convection zone while in 3-D simulations they are of order 10 K throughout the convection zone up to 0.96 RR_{\odot}. In 3-D simulations, baroclinic effects are found to be important to tilt the isocontours of Ω\Omega away from a cylindrical profile in most of the convection zone helped by Reynolds and viscous stresses at some locations. By contrast the baroclinic effect inverted by helioseismology are much larger than what is required to yield the observed angular velocity profile. Conclusion: The solar convection does not appear to be in strict thermal wind balance, Reynolds stresses must play a dominant role in setting not only the equatorial acceleration but also the observed conical angular velocity profile.Comment: 8 pages, 6 figures (low resolution), Accepted by Astronomy and Astrophysics - Affiliation: (1) AIM, CEA/DSM-CNRS-Univ. Paris Diderot, IRFU/SAp, France & (2) LUTH, Observatoire de Paris, CNRS-Univ. Paris Diderot, France ; (3) Tata Institute of Fundamental Research, India; (4) Centre for Basic Sciences, University of Mumbai, Indi

    Does the Sun Shrink with Increasing Magnetic Activity?

    Get PDF
    We have analyzed the full set of SOHO/MDI f- and p-mode oscillation frequencies from 1996 to date in a search for evidence of solar radius evolution during the rising phase of the current activity cycle. Like Antia et al. (2000), we find that a significant fraction of the f-mode frequency changes scale with frequency; and that if these are interpreted in terms of a radius change, it implies a shrinking sun. Our inferred rate of shrinkage is about 1.5 km/y, which is somewhat smaller than found by Antia et al. We argue that this rate does not refer to the surface, but rather to a layer extending roughly from 4 to 8 Mm beneath the visible surface. The rate of shrinking may be accounted for by an increasing radial component of the rms random magnetic field at a rate that depends on its radial distribution. If it were uniform, the required field would be ~7 kG. However, if it were inwardly increasing, then a 1 kG field at 8 Mm would suffice. To assess contribution to the solar radius change arising above 4Mm, we analyzed the p-mode data. The evolution of the p-mode frequencies may be explained by a magnetic^M field growing with activity. The implications of the near-surface magnetic field changes depend on the anisotropy of the random magnetic field. If the field change is predominantly radial, then we infer an additional shrinking at a rate between 1.1-1.3 km/y at the photosphere. If on the other hand the increase is isotropic, we find a competing expansion at a rate of 2.3 km/y. In any case, variations in the sun's radius in the activity cycle are at the level of 10^{-5} or less, hence have a negligible contribution to the irradiance variations.Comment: 10 pages (ApJ preprint style), 4 figures; accepted for publication in Ap
    corecore