25 research outputs found

    Etude expérimentale et modélisation thermodynamique de systèmes de delafossites à base de cuivre

    Get PDF
    Ce travail de thèse multidisciplinaire a été dédié à l’étude des phases CuMO2 avec M = {Cr et Fe} de la famille structurale delafossite. Dans le but principal d’élargir les connaissances et de combler les lacunes autour des propriétés thermodynamiques de ce type de phases, une étude expérimentale approfondie des systèmes Cu-Fe-O et Cu-Cr-O a été menée. Les principaux résultats obtenus sont : a) pour la première fois, une non-stœchiométrie cationique pour la phase delafossite du type CuFe1-yO2- avec y 0.12 a été démontrée, b) les coordonnées du point eutectique du système Cu-Fe-O sous air ont été mesurées à 1049(3) °C pour une composition x(Fe) = 0.105, c) le domaine de stabilité de la phase CuFeO2 sous air est compris entre 1022(2) °C et 1070(2) °C, d) une absence de solution solide à structure delafossite CuCrO2 a été constatée pour les teneurs x(Cr) < 0.50, e) une légère solubilité de chrome dans la phase delafossite avec une valeur maximale de x(Cr) = 0.524(8) a été mesurée dans cette phase, f) la phase spinelle CuCr2O4 est stœchiométrique du fait de l’invariance des paramètres structuraux et de la composition chimique et g) les propriétés thermodynamiques de la phase delafossite CuCrO2 ont été déterminées pour la première fois et les valeurs retenues pour cette phase sont : fH298(CuCrO2) = 670 800 ± 1 400 J/mol, S°298(CuCrO2) = 88.89 J/mol et cp = 102.564 2.872.10-73 128 5421.5 entre [298 < T < 1300]. Ces résultats ont été couplés avec ceux issus de la bibliographie pour la construction d’un modèle thermodynamique générique décrivant les propriétés des phases delafossite, liquide et spinelles dans les sous-systèmes du quaternaire Cu-Cr-Fe-O. La solution liquide a été modélisée par le Modified Quasichemical Model ((Cu1+,Cu2+,Cr1+,Cr2+,Cr3+,Fe1+,Fe2+,Fe3+)(O2-,Va1-)) et les binaires Cu-O et Cr-O ont été réévalués. Une description simplifiée de la solution solide à structure delafossite selon le modèle Compound Energie Formalism a été proposée selon (Cu1+,Cu2+)1 [Cr3+,Fe3+,Cu2+]1 O2 (Va0,O2-)1. Enfin, les systèmes ternaires ont été modélisés par la méthode Calphad, en complétant un modèle existant pour Cu-Fe-O et en établissant un modèle pour Cu-Cr-O. Une projection pour le système quaternaire Cu-Cr-Fe-O a même été proposée

    Insights on the Stability and Cationic Nonstoichiometry of CuFeO2 Delafossite

    Get PDF
    CuFeO2, the structure prototype of the delafossite family, has received renewed interest in recent years. Thermodynamic modeling and several experimental Cu–Fe–O system investigations did not focus specifically on the possible nonstoichiometry of this compound, which is, nevertheless, a very important optimization factor for its physicochemical properties. In this work, through a complete set of analytical and thermostructural techniques from 50 to 1100 °C, a fine reinvestigation of some specific regions of the Cu–Fe–O phase diagram under air was carried out to clarify discrepancies concerning the delafossite CuFeO2 stability region as well as the eutectic composition and temperature for the reaction L = CuFeO2 + Cu2O. Differential thermal analysis and Tammann’s triangle method were used to measure the liquidus temperature at 1050 ± 2 °C with a eutectic composition at Fe/(Cu + Fe) = 0.105 mol %. The quantification of all of the present phases during heating and cooling using Rietveld refinement of the high-temperature X-ray diffraction patterns coupled with thermogravimetric and differential thermal analyses revealed the mechanism of formation of delafossite CuFeO2 from stable CuO and spinel phases at 1022 ± 2 °C and its incongruent decomposition into liquid and spinel phases at 1070 ± 2 °C. For the first time, a cationic off-stoichiometry of cuprous ferrite CuFe1–yO2−δ was unambiguous, as evidenced by two independent sets of experiments: (1) Electron probe microanalysis evidenced homogeneous micronic CuFe1–yO2−δ areas with a maximum y value of 0.12 [i.e., Fe/(Cu + Fe) = 0.47] on Cu/Fe gradient generated by diffusion from a perfect spark plasma sintering pristine interface. Micro-Raman provided structural proof of the existence of the delafossite structure in these areas. (2) Standard Cu additions from the stoichiometric compound CuFeO2 coupled with high-temperature X-ray diffraction corroborated the possibility of obtaining a pure Cu-excess delafossite phase with y = 0.12. No evidence of an Fe-rich delafossite was found, and complementary analysis under a neutral atmosphere shows narrow lattice parameter variation with an increase of Cu in the delafossite structure. The consistent new data set is summarized in an updated experimental Cu–Fe–O phase diagram. These results provide an improved understanding of the stability region and possible nonstoichiometry value of the CuFe1–yO2−δ delafossite in the Cu–Fe–O phase diagram, enabling its optimization for specific applications

    Assessment of thermodynamic data for CuCrO2 delafossite from calorimetric measurements

    Get PDF
    A detailed investigation of the thermodynamic properties of delafossite CuCrO2 was carried out by experimental methods on synthetic CuCrO2 delafossite samples (differential scanning calorimetry from ambient to 871 K and drop calorimetry from 823 to 1123 K) and theoretical methods (density functional theory). Based on these data and available literature (low temperature heat capacity measurements and calculations, high temperature emf data), we propose, for the first time, a full set of thermodynamic data for the phase CuCrO2. Our selection comes to: ΔfH°298(CuCrO2) = −670.8 ± 1.3 kJ mol−1, S°298(CuCrO2) = 88.9 J K−1, and cp°(T)=1.02564.102-2.87159.107 T-3-1.28542.105 T-1.5 (298 < T < 1300 K)

    3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles—A study of surface area and spinel inversion influence

    Get PDF
    The MgFe2O4 spinel exhibits remarkable magnetic properties that open up numerous applications in biomedicine, the environment and catalysis. MgFe2O4 nanoparticles are excellent catalyst for carbon nanotube (CNT) production. In this work, we proposed to use MgFe2O4 nanopowder as a catalyst in the production of 3D macroscopic structures based on CNTs. The creation of these nanoengineered 3D architectures remains one of the most important challenges in nanotechnology. These systems have high potential as supercapacitors, catalytic electrodes, artificial muscles and in environmental applications. 3D macrostructures are formed due to an elevated density of CNTs. The quantity and quality of the CNTs are directly related to the catalyst properties. A heat treatment study was performed to produce the most effective catalyst. Factors such as superficial area, spinel inversion, crystallite size, degree of agglomeration and its correlation with van der Waals forces were examined. As result, the ideal catalyst properties for CNT production were determined and high-density 3D CNT macrostructures were produced successfully

    Magnetic Properties of Ferritchromite and Cr‐Magnetite and Monitoring of Cr‐Spinels Alteration in Ultramafic and Mafic Rocks

    Get PDF
    Spinel is a ubiquitous mineral in mafic/ultramafic rocks. Spinel cores chemistry is extensively used as a petrogenetic proxy while their alteration phases, ferritchromite, and Cr‐magnetite, are used as metamorphic grade indicators. However, the magnetic properties and composition of these phases are still ill‐defined and no consensus exists concerning the metamorphic conditions involved in their formation. Here, we use the magnetic properties of these Cr‐spinel alteration phases, via field‐dependent parameters and observations with a magnetic microscope coupled with mineral chemistry and Mössbauer spectroscopy, to better constrain their composition. We identify Cr‐magnetite by a Curie point of ca. 520°C. We show that it is characterized by an n between 0.1 and 0.2 in the Fe‐Cr spinel formula [Fe2+(Fe1−n Cr n)2 O4], which corresponds to 6–13 wt.% of Cr2O3. The abundance of Cr‐magnetite indicates a strong alteration of Cr‐spinels that could reflect a significant hydrothermal activity rather than a high metamorphism grade. Normalized variation curves of the magnetic susceptibility during heating allow a relative quantification of the contributions of different magnetic phases to the magnetic susceptibility. This highlights a link between ferritchromite destabilization into maghemite at ca. 130°C followed by the destabilization of this maghemite starting at 300°C. We identify specific covariation trends between these two magnetic species characterizing different alteration processes. This study opens the door to magnetic monitoring of the Cr‐spinel alteration state in mafic and ultramafic rocks. It constitutes a new, fast, and weakly destructive way to study the petrological history of both terrestrial and extraterrestrial rocks

    Luminescence and Scintillation in the Niobium Doped Oxyfluoride Rb\u3csub\u3e4\u3c/sub\u3eGe\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e9\u3c/sub\u3eF\u3csub\u3e6\u3c/sub\u3e:Nb

    Get PDF
    A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. The isostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.9960(3) Å, b = 11.7464(6) Å, and c = 19.3341(9) Å. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggest that the niobium is located in an octahedral coordination environment. Optical measurements inform us that the niobium dopant acts as the activator. The synthesis, structure, and optical properties are reported, including radioluminescence (RL) measurements under X-ray irradiation

    Luminescence and Scintillation in the Niobium Doped Oxyfluoride Rb\u3csub\u3e4\u3c/sub\u3eGe\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e9\u3c/sub\u3eF\u3csub\u3e6\u3c/sub\u3e:Nb

    Get PDF
    A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthe-sized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystal-lizes in the orthorhombic space groupPbcnwith lattice parametersa= 6.98430(10)Å,b= 11.7265(2) Å,andc= 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9units connectedby GeO3F3octahedra. In its pure form, Rb4Ge5O9F6shows neither luminescence nor scintillation butwhen doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. Theisostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space groupPbcnwith lattice parametersa= 6.9960(3) Å,b= 11.7464(6) Å, andc= 19.3341(9) Å. X-ray absorption nearedge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggestthat the niobium is located in an octahedral coordination environment. Optical measurements informus that the niobium dopant acts as the activator. The synthesis, structure, and optical properties arereported, including radioluminescence (RL) measurements under X-ray irradiation

    Luminescence and Scintillation in the Niobium Doped Oxyfluoride Rb\u3csub\u3e4\u3c/sub\u3eGe\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e9\u3c/sub\u3eF\u3csub\u3e6\u3c/sub\u3e:Nb

    Get PDF
    A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. The isostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.9960(3) Å, b = 11.7464(6) Å, and c = 19.3341(9) Å. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggest that the niobium is located in an octahedral coordination environment. Optical measurements inform us that the niobium dopant acts as the activator. The synthesis, structure, and optical properties are reported, including radioluminescence (RL) measurements under X-ray irradiation
    corecore