11 research outputs found

    Behavioral Plasticity of Audiovisual Perception: Rapid Recalibration of Temporal Sensitivity but Not Perceptual Binding Following Adult-Onset Hearing Loss

    Get PDF
    The ability to accurately integrate or bind stimuli from more than one sensory modality is highly dependent on the features of the stimuli, such as their intensity and relative timing. Previous studies have demonstrated that the ability to perceptually bind stimuli is impaired in various clinical conditions such as autism, dyslexia, schizophrenia, as well as aging. However, it remains unknown if adult-onset hearing loss, separate from aging, influences audiovisual temporal acuity. In the present study, rats were trained using appetitive operant conditioning to perform an audiovisual temporal order judgment (TOJ) task or synchrony judgment (SJ) task in order to investigate the nature and extent that audiovisual temporal acuity is affected by adult-onset hearing loss, with a specific focus on the time-course of perceptual changes following loud noise exposure. In our first series of experiments, we found that audiovisual temporal acuity in normal-hearing rats was influenced by sound intensity, such that when a quieter sound was presented, the rats were biased to perceive the audiovisual stimuli as asynchronous (SJ task), or as though the visual stimulus was presented first (TOJ task). Psychophysical testing demonstrated that noise-induced hearing loss did not alter the rats\u27 temporal sensitivity 2-3 weeks post-noise exposure, despite rats showing an initial difficulty in differentiating the temporal order of audiovisual stimuli. Furthermore, consistent with normal-hearing rats, the timing at which the stimuli were perceived as simultaneous (i.e., the point of subjective simultaneity, PSS) remained sensitive to sound intensity following hearing loss. Contrary to the TOJ task, hearing loss resulted in persistent impairments in asynchrony detection during the SJ task, such that a greater proportion of trials were now perceived as synchronous. Moreover, psychophysical testing found that noise-exposed rats had altered audiovisual synchrony perception, consistent with impaired audiovisual perceptual binding (e.g., an increase in the temporal window of integration on the right side of simultaneity; right temporal binding window (TBW)). Ultimately, our collective results show for the first time that adult-onset hearing loss leads to behavioral plasticity of audiovisual perception, characterized by a rapid recalibration of temporal sensitivity but a persistent impairment in the perceptual binding of audiovisual stimuli

    Cortical Plasticity following Adult-Onset Hearing Loss

    Get PDF
    The consequences of hearing loss are not confined to how the central auditory system processes sound; crossmodal plasticity also occurs, which is characterized by an increased responsiveness of neurons in auditory areas to visual and/or tactile stimuli. In the primary auditory cortex, partial hearing loss causes a decrease in the number of auditory-responsive neurons, as well as an increase in multisensory neurons. However, it was relatively unknown how adult-onset hearing loss affected cortical areas that are already capable of integrating multisensory information, such as the lateral extrastriate visual cortex (V2L). Using a combination of in vivo electrophysiology, neuropharmacology and behavioural testing, this thesis investigated the nature and extent that crossmodal plasticity occurs within higher-order sensory cortices, and its perceptual consequences. At the level of single neurons, hearing loss increased the proportion of visually-responsive neurons, and decreased the number of neurons activated by both auditory and visual stimuli in V2L; findings inconsistent with the plasticity observed in the neighbouring dorsal auditory cortex (AuD), where the proportion of multisensory neurons nearly doubled. Subsequent analyses of the microcircuits within these higher-order cortices, revealed a layer-specific enhancement of auditory input (i.e., central gain enhancement) within the granular layer of AuD. In contrast, crossmodal plasticity was evident across multiple cortical layers within V2L, and also manifested in AuD. Despite the extensive plasticity in the higher-order sensory cortices, hearing loss lead to behavioural changes in audiovisual perception, characterized by a rapid recalibration of temporal sensitivity to the audiovisual stimuli. Next, a neurophysiological assessment revealed that adult-onset hearing loss did not cause a loss of temporally-precise audiovisual processing, but rather a shift in the cortical region displaying the capacity for temporal sensitivity. Lastly, using pharmacological manipulations, hearing loss was found to cause a layer-specific enhancement of visual-evoked input within the granular layer of the V2L cortex, indicative of thalamocortical plasticity. Overall, this work demonstrates that adult-onset hearing loss induces plasticity at the level of single neurons, local cortical microcircuits and sensory perception, all of which are associated with a complex assortment of crossmodal and intramodal changes across the layers of higher-order sensory cortices

    Hyperexcitable and immature-like neuronal activity in the auditory cortex of adult rats lacking the language-linked CNTNAP2 gene.

    Get PDF
    The contactin-associated protein-like 2 gene, CNTNAP2, is a highly penetrant risk gene thought to play a role in the genetic etiology of language-related disorders, such as autism spectrum disorder and developmental language disorder. Despite its candidacy for influencing language development, few preclinical studies have examined the role of CNTNAP2 in auditory processing. Using in vivo and in vitro electrophysiological recordings in a rat model with translational validity, we report that a loss of the Cntnap2 gene function caused immature-like cortical evoked potentials, delayed multiunit response latencies to acoustic stimuli, impaired temporal processing, and led to a pattern of hyperexcitability in both multiunit and single cell recordings in adulthood. These collective results provide direct evidence that a constitutive loss of Cntnap2 gene function in rats can cause auditory processing impairments similar to those seen in language-related human disorders, indicating that its contribution in maintaining cortical neuron excitability may underlie the cortical activity alterations observed in Cntnap2-/- rats

    Differences in Startle and Prepulse Inhibition in Contactin-associated Protein-like 2 Knock-out Rats are Associated with Sex-specific Alterations in Brainstem Neural Activity

    Get PDF
    The contactin-associated protein-like 2 (CNTNAP2) gene encodes for the CASPR2 protein, which plays an essential role in neurodevelopment. Mutations in CNTNAP2 are associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. Rats with a loss of function mutation in the Cntnap2 gene show increased acoustic startle response (ASR) and decreased prepulse inhibition (PPI). The neural basis of this altered auditory processing in Cntnap2 knock-out rats is currently unknown. Auditory brainstem recordings previously revealed no differences between the genotypes. The next step is to investigate brainstem structures outside of the primary auditory pathway that mediate ASR and PPI, which are the pontine reticular nucleus (PnC) and pedunculopontine tegmentum (PPTg), respectively. Multi-unit responses from the PnC and PPTg in vivo of the same rats revealed sex-specific effects of loss of CASPR2 expression on PnC activity, but no effects on PPTg activity. Female Cntnap

    Altered Auditory Processing, Filtering, and Reactivity n the Cntnap2 Knock-Out Rat Model for Neurodevelopmental Disorders

    Get PDF
    Sensory processing, and auditory processing in particular, is altered in individuals with neurodevelopmental disorders such as autism spectrum disorders (ASDs). The typical maturation of the auditory system is perturbed in these individuals during early development, which may underlie altered auditory reactivity that persists in later life. Of the many genes that regulate the auditory system development, loss-of-function mutations in the CNTNAP2 gene are strongly associated with language processing deficits and ASD. Therefore, using a novel Cntnap2 knock-out rat model, we tested the impact of Cntnap2 loss on auditory processing, filtering, and reactivity throughout development and young adulthood in male and female animals. Although hearing thresholds were not altered in Cntnap2 knock-out animals, we found a reduction in response amplitudes and a delay in response latency of the auditory brainstem response (ABR) in juvenile Cntnap2 knock-out rats compared with age-matched controls. Amplitudes and latency of the ABR largely normalized by adulthood, indicating a delayed maturation of auditory processing pathways in Cntnap2 knock-out rats. Despite the reduced ABR amplitudes, adolescent Cntnap2 knock-out animals displayed increased startle reactivity accompanied by disruptions in sensory filtering and sensorimotor gating across various conditions, most of which persisted in adulthood. All of these observations show striking parallels to disruptions reported in ASD. Our results also imply that developmental disruptions of sensory signal processing are associated with persistent changes in neural circuitries responsible for implicit auditory evoked behavior, emphasizing the need for interventions that target sensory processing disruptions early during development in ASD

    Loss of Cntnap2 in the Rat Causes Autism-Related Alterations in Social Interactions, Stereotypic Behavior, and Sensory Processing

    No full text
    Autism spectrum disorder (ASD) is characterized by social interaction and communication impairments, as well as restrictive/repetitive patterns of behavior, interests or activities, which can coexist with intellectual disability and altered sensory processing. To study the mechanisms underlying these core features of ASD, preclinical research has developed animal models with manipulations in ASD-linked genes, such as CNTNAP2. In order to fully interpret the findings from mechanistic studies, the extent to which these models display behaviors consistent with ASD must be determined. Toward that goal, we conducted an investigation of the consequences of a functional loss of Cntnap2 on ASD-related behaviors by comparing the performance of rats with a homozygous or heterozygous knockout of Cntnap2 to their wildtype littermates across a comprehensive test battery. Cntnap2−/− rats showed deficits in sociability and social novelty, and they displayed repetitive circling and hyperlocomotion. Moreover, Cntnap2−/− rats demonstrated exaggerated acoustic startle responses, increased avoidance to sounds of moderate intensity, and a lack of rapid audiovisual temporal recalibration; indicating changes in sensory processing at both the pre-attentive and perceptual levels. Notably, sensory behaviors requiring learned associations did not reveal genotypic differences, whereas tasks relying on automatic/implicit behaviors did. Ultimately, because these collective alterations in social, stereotypic, and sensory behaviors are phenotypically similar to those reported in individuals with ASD, our results establish the Cntnap2 knockout rat model as an effective platform to study not only the molecular and cellular mechanisms associated with ASD, but also the complex relationship between altered sensory processing and other core ASD-related behaviors. Lay Summary: Autism spectrum disorder (ASD) is characterized by social interaction differences, and restrictive/repetitive patterns of behavior. We studied the behavioral alterations caused by the loss of an autism-linked gene, Cntnap2, in the rat to determine how mutations in this gene contribute to autism-related behaviors. We show the loss of Cntnap2 leads to changes in social, stereotypic, and sensory behaviors, indicating this rat model can be used to better understand the brain changes underlying ASD. Autism Res 2020, 13: 1698–1717. © 2020 International Society for Autism Research and Wiley Periodicals LLC

    Deciphering midbrain mechanisms underlying prepulse inhibition of startle

    No full text
    Prepulse inhibition (PPI) is an operational measure of sensorimotor gating. Deficits of PPI are a hallmark of schizophrenia and associated with several other psychiatric illnesses such as e.g. autism spectrum disorder, yet the mechanisms underlying PPI are still not fully understood. There is growing evidence contradicting the long-standing hypothesis that PPI is mediated by a short feed-forward midbrain circuitry including inhibitory cholinergic projections from the pedunculopontine tegmental nucleus (PPTg) to the startle pathway. Here, we employed a chemogenetic approach to explore the involvement of the PPTg in general, and cholinergic neurons specifically, in PPI. Activation of inhibitory DREADDs (designer receptors exclusively activated by designer drugs) in the PPTg by systemic administration of clozapine-N-oxide (CNO) disrupted PPI, confirming the involvement of the PPTg in PPI. In contrast, chemogenetic inhibition of specifically cholinergic PPTg neurons had no effect on PPI, but inhibited morphine-induced conditioned place preference (CPP) in the same animals, showing that the DREADDs were effective in modulating behavior. These findings support a functional role of the PPTg and/or neighboring structures in PPI in accordance with previous lesion studies, but also provide strong evidence against the hypothesis that specifically cholinergic PPTg neurons are involved in mediating PPI, implicating rather non-cholinergic midbrain neurons
    corecore