616 research outputs found

    Revisiting the German wage structure

    Get PDF
    This paper shows that wage inequality in West Germany has increased over the past three decades, contrary to common perceptions. During the 1980s, the increase was concentrated at the top of the distribution; in the 1990s, it occurred at the bottom end as well. Our findings are consistent with the view that both in Germany and in the United States, technological change is responsible for the widening of the wage distribution at the top. At the bottom of the wage distribution, the increase in inequality is better explained by episodic events, such as supply shocks and changes in labor market institutions. These events happened a decade later in Germany than in the United States

    Ballistic Limit Equations for Non-Aluminum Projectiles Impacting Dual-Wall Spacecraft Systems

    Get PDF
    One of the primary design considerations of earth-orbiting spacecraft is the mitigation of the damage that might occur from an on-orbit MMOD impact. Traditional damage-resistant design consists of a \u27bumper\u27 that is placed a small distance away from a spacecraft component or from the wall of the element in which it is housed. The performance of such a multi-wall structural element is typically characterized by its ballistic limit equation (BLE), which defines the threshold particle size that results in a failure of the spacecraft element. BLEs are also key components of any micro-meteoroid/orbital debris (MMOD) risk assessment calculations. However, these assessments often call for BLEs to predict impact response for projectiles made of materials not used in the development of those BLEs. The question naturally arises regarding how close are the predictions of such BLEs when used in impact scenarios involving projectiles made of materials not necessarily considered in their development. In an effort to address this issue, a study was performed with the objective of assessing the validity of the NNO BLE for non-aluminum particles. Particle materials considered included steel, copper, and Al2O3 (i.e. particles that are made of materials that are more dense than aluminum). Comparisons are made between actual test results involving these non-aluminum projectiles and the predictions of the NNO BLE. In nearly all cases, the NNO BLE was found not to work very well in the predicting failure / no failure response of these non-aluminum projectiles. A new NNO-type BLE is then developed that can be used to more reliably predict the response of dual-wall systems under the hypervelocity impact of such heavier non-aluminum projectiles

    A First-Principles-Based Model for Crack Formation in a Pressurized Tank Following an MMOD Impact

    Get PDF
    Most robotic spacecraft have at least one pressurized vessel on board, usually a liquid propellant tank. One of the design considerations of such spacecraft is the anticipation and mitigation of the possible damage that might occur from on-orbit impacts by micro-meteoroids or orbital debris (MMOD). While considerable effort has been expended in the study of the response of non-pressurized spacecraft components to MMOD impacts, relatively few studies have been conducted on the pressurized elements of such spacecraft. In particular, since it was first proposed nearly 45 years ago, NASA\u27s current evaluation methodology for determining impact-induced failure of pressurized tanks has undergone little scrutiny. This paper presents a first-principles based model that has been developed to predict whether or not cracking might start or a through-crack might be created under an impact crater in a thin plate. This model was used to examine the effect of penetration depth on crack formation and whether or not the crack might grow through the tank wall thickness. The predictions of the model are compared to experimental data with encouraging results. The paper also develops some suggestions for future work in this area, including the extension of the first-principles model to include 3-D crack initiation modelling

    Review: Strategies for Writing Center Research, by Jackie Grutsch McKinney

    Get PDF

    Birefringence in nonlinear anisotropic dielectric media

    Full text link
    Light propagation is investigated in the context of local anisotropic nonlinear dielectric media at rest with the dielectric coefficients ϵμν=ϵμν(E,B)\epsilon^\mu{}_\nu = \epsilon^\mu{}_\nu (\vec{E},\vec{B}) and constant μ\mu, in the limit of geometrical optics. Birefringence was examined and the general conditions for its occurrence were presented. A toy model is exhibited, in which uniaxial birefringent media with nonlinear dielectric properties could be driven by external fields in such way that birefringence may be artificially controlled. The effective geometry interpretation is also addressed.Comment: 5 pages, 1 figur

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante 1 hypotheses . The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, a meta-analytic approach that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors possibly related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discusse

    An augmented Young-Laplace model of an evaporating meniscus in a micro-channel with high heat flux

    Get PDF
    High flux evaporations from a steady meniscus formed in a 2 micron channel is modeled using the augmented Young-Laplace equation. The heat flux is found to be a function of the long range van der Waals dispersion force which represents interfacial conditions between heptane and various substrates. Heat fluxes of (1.3-1.6) x 10(exp 6) W/m(exp 2) based on the width of the channel are obtained for heptane completely wetting the substrate at 100 C. Small channels are used to obtain these large fluxes. Even though the real contact angle is 0 deg, the apparent contact angle is found to vary between 24.8 deg and 25.6 deg. The apparent contact angle, which represents viscous losses near the contact line, has a large effect on the heat flow rate because of its effect on capillary suction and the area of the meniscus. The interfacial heat flux is modeled using kinetic theory for the evaporation rate. The superheated state depends on the temperature and the pressure of the liquid phase. The liquid pressure differs from the pressure of the vapor phase due to capillarity and long range van der Waals dispersion forces which are relevant in the ultra think film formed at the leading edge of the meniscus. Important pressure gradients in the thin film cause a substantial apparent contact angle for a complete wetting system. The temperature of the liquid is related to the evaporation rate and to the substrate temperature through the steady heat conduction equation. Conduction in the liquid phase is calculated using finite element analysis except in the vicinity of the thin film. A lubrication theory solution for the thin film is combined with the finite element analysis by the method of matched asymptotic expansions

    Water vapor emission from IRC+10216 and other carbon-rich stars: model predictions and prospects for multitransition observations

    Full text link
    We have modeled the emission of H2O rotational lines from the extreme C-rich star IRC+10216. Our treatment of the excitation of H2O emissions takes into account the excitation of H2O both through collisions, and through the pumping of the nu2 and nu3 vibrational states by dust emission and subsequent decay to the ground state. Regardless of the spatial distribution of the water molecules, the H2O 1_{10}-1_{01} line at 557 GHz observed by the Submillimeter Wave Astronomy Satellite (SWAS) is found to be pumped primarily through the absorption of dust-emitted photons at 6 μ\mum in the nu2 band. As noted by previous authors, the inclusion of radiative pumping lowers the ortho-H2O abundance required to account for the 557 GHz emission, which is found to be (0.5-1)x10^{-7} if the presence of H2O is a consequence of vaporization of orbiting comets or Fischer-Tropsch catalysis. Predictions for other submillimeter H2O lines that can be observed by the Herschel Space Observatory (HSO) are reported. Multitransition HSO observations promise to reveal the spatial distribution of the circumstellar water vapor, discriminating among the several hypotheses that have been proposed for the origin of the H2O vapor in the envelope of IRC+10216. We also show that, for observations with HSO, the H2O 1_{10}-1_{01} 557 GHz line affords the greatest sensitivity in searching for H2O in other C-rich AGB stars.Comment: 35 pages, 12 figures, to be published in The Astrophysical Journa

    Uncertainty Considerations for Ballistic Limit Equations

    Get PDF
    The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA determines the overall risk associated with a particular mission by factoring in all known risks to the spacecraft during its mission. The threat to mission and human life posed by the micro-meteoroid and orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the ISS. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. In this paper, we present possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the Shuttle and Station versions of BUMPER II

    The views of older women towards mammographic screening: a qualitative and quantitative study

    Get PDF
    Purpose: Mammographic screening has improved breast cancer survival in the screened age group. This improved survival has not been seen in older women (>70 years) where screening uptake is low. This study explores the views, knowledge and attitudes of older women towards screening. Methods: Women (>70) were interviewed about breast screening. Interview findings informed the development of a questionnaire which was sent to 1000 women (>70) to quantify their views regarding screening. Results: Twenty-six women were interviewed and a questionnaire designed. The questionnaire response rate was 48.3% (479/992). Over half (52.9%, 241/456) of respondents were unaware they could request mammography by voluntary self-referral and were unaware of how to arrange this. Most (81.5% 383/470) had not attended breast screening since turning 70. Most (75.6%, 343/454) felt screening was beneficial and would attend if invited. Most, (90.1%, 412/457) felt screening should be offered to all women regardless of age or health. Conclusions: There is a lack of knowledge about screening in older women. The majority felt that invitation to screening should be extended to the older age group regardless of age or health. The current under-utilised system of voluntary self referral is not supported by older women
    corecore