7 research outputs found

    Gray matter networks associated with attention and working memory deficit in ADHD across adolescence and adulthood

    Get PDF
    Contains fulltext : 231759.pdf (publisher's version ) (Open Access)Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disorder and may persist into adulthood. Working memory and attention deficits have been reported to persist from childhood to adulthood. How neuronal underpinnings of deficits differ across adolescence and adulthood is not clear. In this study, we investigated gray matter of two cohorts, 486 adults and 508 adolescents, each including participants from ADHD and healthy controls families. Two cohorts both presented significant attention and working memory deficits in individuals with ADHD. Independent component analysis was applied to the gray matter of each cohort, separately, to extract cohort-inherent networks. Then, we identified gray matter networks associated with inattention or working memory in each cohort, and projected them onto the other cohort for comparison. Two components in the inferior, middle/superior frontal regions identified in adults and one component in the insula and inferior frontal region identified in adolescents were significantly associated with working memory in both cohorts. One component in bilateral cerebellar tonsil and culmen identified in adults and one component in left cerebellar region identified in adolescents were significantly associated with inattention in both cohorts. All these components presented a significant or nominal level of gray matter reduction for ADHD participants in adolescents, but only one showed nominal reduction in adults. Our findings suggest although the gray matter reduction of these regions may not be indicative of persistency of ADHD, their persistent associations with inattention or working memory indicate an important role of these regions in the mechanism of persistence or remission of the disorder

    Empirically grounded agent–based policy evaluation of the adoption of sustainable lighting under the European Ecodesign Directive

    Get PDF
    Twelve years ago, the European Union began with the gradual phase-out of energy-inefficient incandescent light bulbs under the Ecodesign Directive. In this work, we implement an agent-based simulation to model the consumer behaviour in the EU lighting market with the goal to explain consumer behaviour and explore alternative policies. Agents are based on the Consumat II model, have individual preferences based on empirical market research, gather experience from past actions, and socially interact with each other in a dynamic environment. Our findings suggest that the adoption of energy–friendly lighting alternatives was hindered by a low level of consumer interest combined with high–enough levels of satisfaction about incandescent bulbs and that information campaigns can partially address this. These findings offer insight into both individual-level driving forces of behaviour and society–level outcomes in a niche market. With this, our work demonstrates the strengths of agent–based models for policy generation and evaluation

    Screening for drugs to reduce zebrafish aggression identifies caffeine and sildenafil

    Get PDF
    Although aggression is a common symptom of psychiatric disorders the drugs available to treat it are non-specific and can have unwanted side effects. In this study we have used a behavioural platform in a phenotypic screen to identify drugs that can reduce zebrafish aggression without affecting locomotion. In a three tier screen of ninety-four drugs we discovered that caffeine and sildenafil can selectively reduce aggression. Caffeine also decreased attention and increased impulsivity in the 5-choice serial reaction time task whereas sildenafil showed the opposite effect. Imaging studies revealed that both caffeine and sildenafil are active in the zebrafish brain, with prominent activation of the thalamus and cerebellum evident. They also interact with 5-HT neurotransmitter signalling. In summary, we have demonstrated that juvenile zebrafish are a suitable model to screen for novel drugs to reduce aggression, with the potential to uncover the neural circuits and signalling pathways that mediate such behavioural effects
    corecore