12 research outputs found

    Application of a hybrid model to reduce bias and improve precision in population estimates for elk (Cervus elaphus) inhabiting a cold desert ecosystem

    Get PDF
    AbstractAccurately estimating the size of wildlife populations is critical to wildlife management and conservation of species. Raw counts or “minimum counts” are still used as a basis for wildlife management decisions. Uncorrected raw counts are not only negatively biased due to failure to account for undetected animals, but also provide no estimate of precision on which to judge the utility of counts. We applied a hybrid population estimation technique that combined sightability modeling, radio collar-based mark-resight, and simultaneous double count (double-observer) modeling to estimate the population size of elk in a high elevation desert ecosystem. Combining several models maximizes the strengths of each individual model while minimizing their singular weaknesses. We collected data with aerial helicopter surveys of the elk population in the San Luis Valley and adjacent mountains in Colorado State, USA in 2005 and 2007. We present estimates from 7 alternative analyses: 3 based on different methods for obtaining a raw count and 4 based on different statistical models to correct for sighting probability bias. The most reliable of these approaches is a hybrid double-observer sightability model (model MH), which uses detection patterns of 2 independent observers in a helicopter plus telemetry-based detections of radio collared elk groups. Data were fit to customized mark-resight models with individual sighting covariates. Error estimates were obtained by a bootstrapping procedure. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to double-observer modeling. The resulting population estimate corrected for multiple sources of undercount bias that, if left uncorrected, would have underestimated the true population size by as much as 22.9%. Our comparison of these alternative methods demonstrates how various components of our method contribute to improving the final estimate and demonstrates why each is necessary

    Multi-Objective Modeling as a Decision-Support Tool for Free-Roaming Horse Management

    Get PDF
    Decisions related to controversial problems in natural resource management receive the greatest support when they account for multiple objectives of stakeholders in a structured and transparent fashion. In the United States, management of free-roaming horses (Equus caballus; horses) is a controversial multiple-objective problem because disparate stakeholder groups have varying objectives and opinions about how to manage fast-growing horse populations in ways that sustain both natural ecosystems and healthy horses. Despite much decision-support research on management alternatives that prevent excessive population size or cost, horse management decisions still receive resistance from a variety of stakeholder groups, potentially because decisions fail to explicitly or transparently account for multiple objectives of diverse stakeholders. Here, we used a predictive model for horse populations to evaluate the degree to which alternative management strategies involving removals and fertility control treatment with the immunocontraceptive vaccine PZP-22 maximize 4 objectives in horse management: maximize ecosystem health, maximize horse health, minimize effects on horse behavior, and minimize management cost. We simulated scenarios varying in management action, frequency, magnitude, and starting population size over a 10-year interval and evaluated scenario performance with a weighted multiple-objective utility reward function. Management involving high-magnitude removals along with PZP-22 treatment generally outperformed other alternatives by achieving higher reward relative to alternatives in 2 scenario analyses. Simulation of 1,372 scenarios at 5 starting population sizes generally found that management with biannual removals and 2 doses of PZP-22 treatment for half of eligible females during years 1 and 5 generated the most rewarding outcomes. However, a removal scenario with more frequent PZP-22 application generated the greatest reward when starting population size was already within target population size range. Our paper demonstrates how values and objectives of diverse stakeholders can be used to support management decisions in ways that might lead to greater acceptance of decisions by a broad array of stakeholder groups

    Evaluation of the Impacts of Radio-Marking Devices on Feral Horses and Burros in a Captive Setting

    Get PDF
    Radio-collars and other radio-marking devices have been invaluable tools for wildlife managers for \u3e40 years. These marking devices have improved our understanding of wildlife spatial ecology and demographic parameters and provided new data facilitating model development for species conservation and management. Although these tools have been used on virtually all North American ungulates, their deployment on feral horses (Equus ferus caballus) or burros (E. asinus) has been limited. To determine if radio-collars and radio-tags could be safely deployed on feral equids, we conducted a 1-year observational study in 2015 to investigate fit and wear of radio-collars on feral horses and burros kept in pastures/pens at the Bureau of Land Management contracted adoption facility in Pauls Valley, Oklahoma, USA. We assessed the impact of radio-collars and transmitter tags on individual behavior, body condition, and evaluated neck surface for effects. We tested 2 radio-collar shapes (teardrop and oval) and a radio-tag (i.e., avian backpack) braided into the mane and tail of horses. Behavior of mares did not differ between radio-collared (n = 12) and control (uncollared; n = 12) individuals. Despite the small sample size, collared burro jennies (n = 4) spent more time standing than controls (n = 4). Stallions wearing radio-collars (n = 9) fed less, moved less, and stood more than controls (n = 8). During the study, we did not detect injuries to the necks of mares or burro jennies, but stallions developed small sores (that healed while still wearing radio-collars and re-haired within 3 months). Two radio-collars occasionally flipped forward over the ears onto the foreheads of stallions. Although our study confirmed that radio-collars could be safely deployed on captive mares and jennies, stallions proved challenging for a variety of reasons. While our conclusions were optimistic, longer studies will be required to ensure radio-collar safety on free-ranging feral horses and burros

    Estimating Bighorn Sheep (\u3ci\u3eOvis Canadensis\u3c/i\u3e) Abundance Using Noninvasive Sampling at a Mineral Lick within a National Park Wilderness Area

    Get PDF
    Conservation of species requires accurate population estimates. We used genetic markers from feces to determine bighorn sheep abundance for a herd that was hypothesized to be declining and in need of population status monitoring. We sampled from a small but accessible portion of the population\u27s range where animals natural congregate at a natural mineral lick to test whether we could accurately estimate population size by sampling from an area where animals concentrate. We used mark-recapture analysis to derive population estimates, and compared estimates from this smaller spatial sampling to estimates from sampling of the entire bighorn sheep range. We found that estimates were somewhat comparable; in 2009, the mineral lick sample and entire range sample differed by 20 individuals, and in 2010 they differed by only one individual. However, we captured 13 individuals in the entire range sample that were not captured at the mineral lick, and thus violated a model assumption that all individuals had an equal opportunity of being captured. This eliminated the possibility of inferring a total population estimate from just animals visiting the mineral lick, but because estimates were relatively similar, monitoring at the mineral lick can provide a useful index for management and conservation. We compared our results to a radio-collar study conducted in 2003-2004 and confirmed that the population remained stable since 2004. Our population estimates were 78 (CI 62-114) in 2009 and 95 (CI 77-131) in 2010. Between 7 and 11 sampling dates were needed to achieve a CV of 20% for population estimates, assuming a capture probability between 0.09 and 0.13. We relied on citizen science volunteers to maximize data collection and reduce costs; 71% of all fecal samples were collected by volunteers, compared to 29% collected by paid staff. We conclude that our technique provides a useful monitoring tool for managers. The technique could be tested and applied in similar populations where animals congregate with high fidelity at a mineral lick or other area

    Body size and digestive system shape resource selection by ungulates : a cross-taxa test of the forage maturation hypothesis

    Get PDF
    The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.DATA AVAILABILITY STATEMENT : The dataset used in our analyses is available via Dryad repository (https://doi.org/10.5061/dryad.jsxksn09f) following a year-long embargo from publication of the manuscript. The coordinates associated with mountain zebra data are not provided in an effort to protect critically endangered black rhino (Diceros bicornis) locations. Interested researchers can contact the data owner (Minnesota Zoo) directly for inquiries.https://wileyonlinelibrary.com/journal/elehj2022Mammal Research InstituteZoology and Entomolog

    Comparison of Aerial Thermal Infrared Imagery and Helicopter Surveys of Bison (Bison bison) in Grand Canyon National Park, USA

    No full text
    Aerial thermal infrared (TIR) surveys are an attractive option for estimating abundances of large mammals inhabiting extensive and heterogeneous terrain. Compared to standard helicopter or fixed-wing aerial surveys, TIR flights can be conducted at higher altitudes translating into greater spatial coverage and increased observer safety; however, monetary costs are much greater. Further, there is no consensus on whether TIR surveys offer improved detection. Consequently, we performed a study to compare results of a TIR and helicopter survey of bison (Bison bison) on the Powell Plateau in Grand Canyon National Park, USA. We also compared results of both surveys to estimates obtained using a larger dataset of bison helicopter detections along the entire North Rim of the Grand Canyon. Observers in the TIR survey counted fewer individual bison than helicopter observers (101 to 127) and the TIR survey cost was 367% higher. Additionally, the TIR estimate was 18.8% lower than the estimate obtained using a larger dataset, while the comparative helicopter survey was 9.3% lower. Despite our small sample size, we found that helicopter surveys are currently the best method for estimating bison abundances in dense canopy cover sites due to ostensibly more accurate estimates and lower cost compared to TIR surveys. Additional research will be needed to evaluate the efficacy of these methods, as well as very high resolution satellite imagery, for bison populations in more open landscapes
    corecore