106 research outputs found

    A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing

    Full text link
    The variable Sun is the most likely candidate for natural forcing of past climate change on time scales of 50 to 1000 years. Evidence for this understanding is that the terrestrial climate correlates positively with solar activity. During the past 10,000 years, the Sun has experienced substantial variations in activity and there have been numerous attempts to reconstruct solar irradiance. While there is general agreement on how solar forcing varied during the last several hundred years --- all reconstructions are proportional to the solar activity --- there is scientific controversy on the magnitude of solar forcing. We present a reconstruction of the Total and Spectral Solar Irradiance covering 130 nm--10 μ\mum from 1610 to the present with annual resolution and for the Holocene with 22-year resolution. We assume that the minimum state of the quiet Sun in time corresponds to the observed quietest area on the present Sun. Then we use available long-term proxies of the solar activity, which are 10^{10}Be isotope concentrations in ice cores and 22-year smoothed neutron monitor data, to interpolate between the present quiet Sun and the minimum state of the quiet Sun. This determines the long-term trend in the solar variability which is then superposed with the 11-year activity cycle calculated from the sunspot number. The time-dependent solar spectral irradiance from about 7000 BC to the present is then derived using a state-of-the-art radiation code. We derive a total and spectral solar irradiance that was substantially lower during the Maunder minimum than observed today. The difference is remarkably larger than other estimations published in the recent literature. The magnitude of the solar UV variability, which indirectly affects climate is also found to exceed previous estimates. We discuss in details the assumptions which leaded us to this conclusion.Comment: 9 pages, 5 figures, accepted for publication in Astronomy&Astrophysic

    NLTE solar irradiance modeling with the COSI code

    Full text link
    Context. The solar irradiance is known to change on time scales of minutes to decades, and it is suspected that its substantial fluctua- tions are partially responsible for climate variations. Aims. We are developing a solar atmosphere code that allows the physical modeling of the entire solar spectrum composed of quiet Sun and active regions. This code is a tool for modeling the variability of the solar irradiance and understanding its influence on Earth. Methods. We exploit further development of the radiative transfer code COSI that now incorporates the calculation of molecular lines. We validated COSI under the conditions of local thermodynamic equilibrium (LTE) against the synthetic spectra calculated with the ATLAS code. The synthetic solar spectra were also calculated in non-local thermodynamic equilibrium (NLTE) and compared to the available measured spectra. In doing so we have defined the main problems of the modeling, e.g., the lack of opacity in the UV part of the spectrum and the inconsistency in the calculations of the visible continuum level, and we describe a solution to these problems. Results. The improved version of COSI allows us to reach good agreement between the calculated and observed solar spectra as measured by SOLSTICE and SIM onboard the SORCE satellite and ATLAS 3 mission operated from the Space Shuttle. We find that NLTE effects are very important for the modeling of the solar spectrum even in the visual part of the spectrum and for its variability over the entire solar spectrum. In addition to the strong effect on the UV part of the spectrum, NLTE effects influence the concentration of the negative ion of hydrogen, which results in a significant change of the visible continuum level and the irradiance variability.Comment: 14 pages, 14 figures, accepted for publication in Astronomy&Astrophysic

    Value of minimum intensity projections for chest CT in COVID-19 patients

    Get PDF
    Purpose: To investigate whether minimum intensity projection (MinIP) reconstructions enable more accurate depiction of pulmonary ground-glass opacity (GGO) compared to standard transverse sections and multiplanar reformat (MPR) series in patients with suspected coronavirus disease 2019 (COVID-19). Method: In this multinational study, chest CT scans of 185 patients were retrospectively analyzed. Diagnostic accuracy, diagnostic confidence, image quality regarding the assessment of GGO, as well as subjective time-efficiency of MinIP and standard MPR series were analyzed based on the assessment of six radiologists. In addition, the suitability for COVID-19 evaluation, image quality regarding GGO and subjective time-efficiency in clinical routine was assessed by five clinicians. Results: The reference standard revealed a total of 149 CT scans with pulmonary GGO. MinIP reconstructions yielded significantly higher sensitivity (99.9 % vs 95.6 %), specificity (95.8 % vs 86.1 %) and accuracy (99.1 % vs 93.8 %) for assessing of GGO compared with standard MPR series. MinIP reconstructions achieved significantly higher ratings by radiologists concerning diagnostic confidence (medians, 5.00 vs 4.00), image quality (medians, 4.00 vs 4.00), contrast between GGO and unaffected lung parenchyma (medians, 5.00 vs 4.00) as well as subjective time-efficiency (medians, 5.00 vs 4.00) compared with MPR-series (all P <.001). Clinicians preferred MinIP reconstructions for COVID-19 assessment (medians, 5.00 vs 3.00), image quality regarding GGO (medians, 5.00 vs 3.00) and subjective time-efficiency in clinical routine (medians, 5.00 vs 3.00). Conclusions: MinIP reconstructions improve the assessment of COVID-19 in chest CT compared to standard images and may be suitable for routine application

    The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    Get PDF
    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone

    T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia

    Get PDF
    Infection with high-risk genital human papillomavirus (HPV) types is a major risk factor for the development of cervical intraepithelial neoplasia (CIN) and invasive cervical carcinoma. The design of effective immunotherapies requires a greater understanding of how HPV-specific T-cell responses are involved in disease clearance and/or progression. Here, we have investigated T-cell responses to five HPV16 proteins (E6, E7, E4, L1 and L2) in women with CIN or cervical carcinoma directly ex vivo. T-cell responses were observed in the majority (78%) of samples. The frequency of CD4+ responders was far lower among those with progressive disease, indicating that the CD4+ T-cell response might be important in HPV clearance. CD8+ reactivity to E6 peptides was dominant across all disease grades, inferring that E6-specific CD8+ T cells are not vitally involved in disease clearance. T-cell responses were demonstrated in the majority (80%) of cervical cancer patients, but are obviously ineffective. Our study reveals significant differences in HPV16 immunity during progressive CIN. We conclude that the HPV-specific CD4+ T-cell response should be an important consideration in immunotherapy design, which should aim to target preinvasive disease

    Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    Get PDF
    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters

    Utility functions for adaptively executing concurrent workflows

    Get PDF
    Workflows are widely used in applications that require coordinated use of computational resources. Workflow definition languages typically abstract over some aspects of the way in which a workflow is to be executed, such as the level of parallelism to be used or the physical resources to be deployed. As a result, a workflow management system has responsibility for establishing how best to map tasks within a workflow to the available resources. As workflows are typically run over shared resources, and thus face unpredictable and changing resource capabilities, there may be benefit to be derived from adapting the task-to-resource mapping while a workflow is executing. This paper describes the use of utility functions to express the relative merits of alternative mappings; in essence, a utility function can be used to give a score to a candidate mapping, and the exploration of alternative mappings can be cast as an optimization problem. In this approach, changing the utility function allows adaptations to be carried out with a view to meeting different objectives. The contributions of this paper include: (i) a description of how adaptive workflow execution can be expressed as an optimization problem where the objective of the adaptation is to maximize a utility function; (ii) a description of how the approach has been applied to support adaptive workflow execution in execution environments consisting of multiple resources, such as grids or clouds, in which adaptations are coordinated across multiple workflows; and (iii) an experimental evaluation of the approach with utility measures based on response time and profit using the Pegasus workflow system
    • …
    corecore