778 research outputs found

    Structural and electrical properties of c-axis oriented Y1-xCaxBa2(Cu1-yZny)3O7-delta thin films grown by pulsed laser deposition

    Full text link
    Ca- and Zn-subsituted Y1-xCaxBa2(Cu1-yZny)O7-delta (x = 0, 0.05 and y = 0, 0.02, 0.04, 0.05) thin films were grown on SrTiO3 (100) substrates using the pulsed laser deposition (PLD) technique. Effects of various growth parameters on the quality of the film were studied via X-ray diffraction (XRD), atomic force microscopy (AFM), and in-plane resistivity, rhoab(T), measurements. The deposition temperature and oxygen partial pressure were gradually increased to 820C and 1.20 mbar respectively. Films grown under these conditions exhibited good c-axis orientation (primarily limited by the grain size) and low values of the extrapolated residual resistivity, rho(0), at zero temperature. The planar hole content, p, was determined from the room temperature thermopower, S[290K], measurements and the effects of oxygen annealing were also studied. Fully oxygenated samples were found to be overdoped with p ~ 0.195. The Superconducting transition temperature Tc(p), and rho(T,p) showed the expected systematic variations with changing Zn content.Comment: Submitted to Physica C (2003

    The Isotope Effect in Superconductors

    Full text link
    We review some aspects of the isotope effect (IE) in superconductors. Our focus is on the influence of factors not related to the pairing mechanism. After summarizing the main results obtained for conventional superconductors, we review the effect of magnetic impurities, the proximity effect and non-adiabaticity on the value of the isotope coefficient (IC). We discuss the isotope effect of TcT_c and of the penetration depth δ\delta. The theory is applied to conventional and high-TcT_c superconductors. Experimental results obtained for YBa2_2Cu3_3O7δ_{7-\delta} related materials (Zn and Pr-substituted as well as oxygen-depleted systems) and for La2x_{2-x}Srx_xCuO4_4 are discussed.Comment: 31 pages, 10 figures. Review article to appear in "Pair Correlation in Many Fermions Systems", Plenum Press 199

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Coupling climate and economic models in a cost-benefit framework: a convex optimization approach

    Get PDF
    In this paper we present a general method, based on a convex optimisation technique, that facilitates the coupling of climate and economic models in a cost-benefit framework. As a demonstration of the method, we couple an economic growth model à la Ramsey adapted from DICE-99 with an efficient intermediate complexity climate model, C-GOLDSTEIN, which has highly simplified physics, but fully 3-D ocean dynamics. As in DICE-99 we assume that an economic cost is associated with global temperature change: this change is obtained from the climate model which is driven by the GHG concentrations computed from the economic growth path. The work extends a previous paper in which these models were coupled in cost-effectiveness mode. Here we consider the more intricate cost-benefit coupling in which the climate impact is not fixed a priori. We implement the coupled model using an oracle-based optimisation technique. Each model is contained in an oracle which supplies model output and information on its sensitivity to a master program. The algorithm Proximal-ACCPM guarantees the convergence of the procedure under sufficient convexity assumptions. Our results demonstrate the possibility of a consistent, cost-benefit, climate-damage optimisation analysis with a 3-D climate model

    Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids

    Full text link
    Incoherent neutron scattering experiments are simulated for simple dynamic models: a glass (with a smooth distribution of harmonic vibrations) and a viscous liquid (described by schematic mode-coupling equations). In most situations multiple scattering has little influence upon spectral distributions, but it completely distorts the wavenumber-dependent amplitudes. This explains an anomaly observed in recent experiments

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    Positive pion absorption on 3He using modern trinucleon wave functions

    Get PDF
    We study pion absorption on 3He employing trinucleon wave functions calculated from modern realistic NN interactions (Paris, CD Bonn). Even though the use of the new wave functions leads to a significant improvement over older calculations with regard to both cross section and polarization data, there are hints that polarization data with quasifree kinematics cannot be described by just two-nucleon absorption mechanisms.Comment: 14 pages, 6 figure

    A Theory for High-TcT_c Superconductors Considering Inhomogeneous Charge Distribution

    Full text link
    We propose a general theory for the critical TcT_c and pseudogap TT^* temperature dependence on the doping concentration for high-TcT_c oxides, taking into account the charge inhomogeneities in the CuO2CuO_2 planes. The well measured experimental inhomogeneous charge density in a given compound is assumed to produce a spatial distribution of local ρ(r)\rho(r). These differences in the local charge concentration is assumed to yield insulator and metallic regions, possibly in a stripe morphology. In the metallic region, the inhomogeneous charge density yields also spatial distributions of superconducting critical temperatures Tc(r)T_c(r) and zero temperature gap Δ0(r)\Delta_0(r). For a given sample, the measured onset of vanishing gap temperature is identified as the pseudogap temperature, that is, TT^*, which is the maximum of all Tc(r)T_c(r). Below TT^*, due to the distribution of Tc(r)T_c(r)'s, there are some superconducting regions surrounded by insulator or metallic medium. The transition to a superconducting state corresponds to the percolation threshold among the superconducting regions with different Tc(r)T_c(r)'s. To model the charge inhomogeneities we use a double branched Poisson-Gaussian distribution. To make definite calculations and compare with the experimental results, we derive phase diagrams for the BSCO, LSCO and YBCO families, with a mean field theory for superconductivity using an extended Hubbard Hamiltonian. We show also that this novel approach provides new insights on several experimental features of high-TcT_c oxides.Comment: 7 pages, 5 eps figures, corrected typo

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"
    corecore