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Coupling Climate and Economic Models in a
Cost-Benefit Framework: A Convex optimisation

Approach∗

L. Drouet†, N.R. Edwards‡and A.Haurie§

July 1 2004

Abstract

In this paper we present a general method, based on a convex optimisation tech-
nique, that facilitates the coupling of climate and economic models in a cost-benefit
framework. As a demonstration of the method, we couple an economic growth model
à la Ramsey adapted from DICE-99 with an efficient intermediate complexity climate
model, C-GOLDSTEIN, which has highly simplified physics, but fully 3-D ocean dy-
namics. As in DICE-99 we assume that an economic cost is associated with global
temperature change: this change is obtained from the climate model which is driven
by the GHG concentrations computed from the economic growth path. The work ex-
tends a previous paper in which these models were coupled in cost-effectiveness mode.
Here we consider the more intricate cost-benefit coupling in which the climate impact
is not fixed a priori. We implement the coupled model using an oracle-based optimisa-
tion technique. Each model is contained in an oracle which supplies model output and
information on its sensitivity to a master program. The algorithm Proximal-ACCPM
guarantees the convergence of the procedure under sufficient convexity assumptions.
Our results demonstrate the possibility of a consistent, cost-benefit, climate-damage
optimisation analysis with a 3-D climate model.

1 Introduction

The aim of this paper is to present a convex optimisation method to couple climate
and economic models within an Integrated Assessment Model (IAM) framework.
IAMs have been introduced as processes for combining and communicating knowledge
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§Logilab-HEC, University of Geneva, Switzerland.
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from diverse scientific disciplines [21]. The two principal objectives for IAMs have
been defined as: (i) adding value compared to an assessment model based on a
single discipline and; (ii) providing comprehensive information to policy makers [19].
Schneider [22] distinguishes three modelling approaches of IAMs: policy evaluation
models (such as the IMAGE model [1]), policy optimisation models (the DICE [18]
and MERGE [16] models) and policy guidance models (the ICLIPS model [23]).
Policy guidance models typically solve a cost-effectiveness problem within certain
bounds on allowed impact. This paper focuses on policy optimisation models. Such
models identify optimal policies, given a set of targets, with the help of optimisation
techniques [13] and thus effectively solve a cost-benefit problem. The cost-benefit
approach arises naturally from the economic formulation of the climate change issue,
and has obvious advantages of simplicity of interpretation and communication. On
the other hand there are major difficulties associated with the practical application of
such an analysis, as summarised by Dowlatabadi [4]: it assumes that all damages and
risks can be valued in monetary terms, and that the relevant actors could agree on
such a valuation; it assumes that all costs are marginal, and it assumes the possibility
of redistribution of wealth between those who benefit and those who suffer the costs.
Nevertheless, demonstration of the feasibility of such a calculation still represents
progress in exposing the relevant issues.

The overwhelming bulk of climate modelling effort is directed towards relatively
highly detailed Atmosphere and Ocean General Circulation Models (AOGCMs),
which directly simulate many of the key processes operating in the climate sys-
tem [11]. Unfortunately, because of constraints imposed by available algorithms,
computer memory requirements and, most of all, processing time required to run
these models as well as the difficulties associated with translating and porting large
numerical codes, such highly detailed AOGCMs cannot be directly integrated in
existing IAM frameworks. According to Nordhaus, inclusion of GCMs in an optimi-
sation model such as DICE-99 is infeasible [18]. Technically, C-GOLDSTEIN is a
GCM, at least for the ocean, although the term GCM is frequently understood to
refer exclusively to higher-resolution models. In this paper, therefore, we present a
framework which allows a representation of climate dynamics in IAMs that includes
more detailed dynamics than in previous studies but still permits the calculation of
optimal policies.

The ultimate facility would be an all-encompassing model with an economic sub-
model, a climate sub-model and a numerical module, which controls the optimisation
procedure, without strong modifications inside the models. A first approach has
been described by Jansenn [13] where he couples the economic part of DICE with a
climate representation from the IMAGE model [1]. He proposes a heuristic method
to find a local optimal solution. More recently, Leimbach et al. have explored a
modular approach [15]. In their coupled model, they re-use the economic model from
ICLIPS, named ICEMODE, and couple it successively with two climate models: one
from ICLIPS with a simple representation of climate and the other, the MAGICC
model [26], which is essentially a model emulator that reproduces the behaviour of the
IPCC model studies. A meta-optimizer module executes the optimisation procedure
and a job control module governs the communication between the other modules.
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The climate subcomponent in all these cases is highly simplified, in no case including
a fluid dynamical model of the ocean or atmosphere.

In this research, we couple an economic growth model, which is an adaptation
of the DICE-99 model of Nordhaus [17, 18], with the efficient climate model C-
GOLDSTEIN [6]. We refer to the coupled model as GOLDICE. In [5], a coupling
of these two models in a cost-effectiveness manner is described, where the median
of the temperature change distribution is not allowed to exceed a threshold of 2.5◦C
at the end of the time horizon. The constraint on temperature increase could be
criticized because it was not endogenously related to damage cost in the economic
model. Moreover, the temperature change constraint is only active at the end of the
simulation. Here, we use a similar approach but in a cost-benefit framework. The
coupling is implemented through the use of a convex programming method, called
the Proximal Analytic Center Cutting Plane Method (Proximal-ACCPM) [7]. At
each iteration, Proximal-ACCPM supplies a query point and an “oracle” provides
the model’s sensitivity at this point. An “oracle” is simply a structure built around
the model which has the capacity to ask the model two questions: “What is the value
of a given model output (e.g. the value of the objective function) at a given point?”
and “What is the gradient of the output with respect to certain given inputs at this
point?”. Under the hypothesis of dealing with convex models, Proximal-ACCPM
guarantees the convergence of the coupling. This algorithm has been used in [3] to
couple a technico-economic model (MARKAL Geneva) with an ozone model to study
local air pollution and its technology response.

Currently, most of these IAMs are written in a single meta-language and the dif-
ferent parts which describe the respective phenomena are strongly linked to form a
compact model. Thus, it is not easy to extend an existing IAM without interfering
with the existing code. Our approach offers a modular-oriented framework appro-
priate to a new generation of IAMs, the Community Integrated Assessment Models
(CIAMs), the concept of which is to combine components and knowledge from dif-
ferent modelling groups. CIAMs should be built to be more expansible, transparent,
applicable and credible than more tightly linked IAMs [12]. IAMs bring together cli-
mate models, socio-economic models, models of technological change, policy models,
transport models and models of social behaviour and decision making. Collabora-
tive IAMs add a cooperative approach to integrated assessment by involving several
institutes which either have already built IAMs and can offer an existing module, or
which are specialist in a domain, e.g. an ocean representation for an oceanographic
institute. The first implementation of a collaborative IAM has been initiated by a
European group including the UK Tyndall Center [24] and is referred to as CIAMn.
The related SoftIAM project provides a flexible implementation framework which en-
ables different modules to be inter-connected using common XML specifications. The
procedure we describe in this paper could be relevant in CIAMs when optimisation
and simulation models are linked.

The paper is organized as follows: in Section 2, we describe the modular structure
of the model, in Section 3, we describe the reduced-order coupling problem and the
Proximal-ACCPM algorithm which realizes the coupling; in Section 4, we present
the implementation and some numerical results. Section 5 concludes and proposes a
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future research agenda.

2 Methodology

The GOLDICE approach is summarized in Figure 1, which shows the two main parts
or “oracles” involved. Communication between the modules is indicated by the ar-
rows in the figure. The two coupling variables are the carbon emissions and the
temperature change. The sharing of these variables forces a consistency between the
two oracles. The climate oracle is composed of two independent modules: carbon-
cycle and C-GOLDSTEIN. Inside the carbon-cycle module (see Section 2.2), carbon
concentration accumulations are calculated with the DICE-99 equations. These equa-
tions represent the carbon exchanges between three reservoirs (the atmosphere, the
mixing reservoir in the upper oceans and the biosphere, and the deep oceans). The
climate model C-GOLDSTEIN, also described in Section 2.2, is a fast, coupled cli-
mate model. C-GOLDSTEIN computes the temperature changes for a given carbon
concentration pathway. The economy oracle, detailed in the next section, maximizes
the global welfare and calculates the induced anthropogenic carbon emissions. For
cost-benefit purposes, a damage function computes a loss in production due to climate
change. The economy equations, the carbon-cycle system and the damage function
come from the DICE-99 model. The following sections describe the content of the
different modules.

Climate Oracle

Economic
Dynamics

Carbon-
Cycle

C-GOLDSTEIN
Damage

Function

-

?

�

6

Economy Oracle

Atmospheric

Carbon

Temperature

Production

Loss of

Carbon

Emissions

Concentrations

Figure 1: GOLDICE framework

2.1 The economy model

The equations of the economy model are taken from the DICE-99 model of Nord-
haus [18]. They describe both the economic dynamics and the damage function.
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DICE-99 is a global model that provides greenhouses gas emissions derived from
a moderately complex, globally aggregated economic model, driven by population
growth and labour productivity. Damage to the economy is represented by a simple
cost feedback. The economic equilibrium is obtained by solving for optimal economic
growth “à la Ramsey”, over a planning horizon T = {0, 1, . . . , tmax}. The equations
of the model are listed below, note that t represents the integer value of the time
index, not the real value of time, which is discretised in 10-year steps. The model
maximizes the sum of the discounted welfare (or utility of consumption) W (c(t), L(t))
over all the periods as shown in equations (1)-(2). When α = 1, the utility function
takes the form L log(c):

max
∑
t∈T

ρ(t)W (c(t), L(t)) (1)

s.t. W (c(t), L(t)) = L(t)
c(t)1−α − 1

1− α
, t ∈ T (2)

c(t) =
C(t)
L(t)

, t ∈ T . (3)

The per-capita value of consumption, c, is defined in Eq. (3). Eqs. (4)-(10) compute
the exogenous parameters of the model. The discount rate ρ is decreasing over
time. This is a controversial issue discussed in [10]. The population, represented by
the labour L, and the technical progress A are growing and stabilizing toward an
asymptotic value. The deforestation ET decreases to zero over time.

r(t) = r1e
−d×r2(t−1), t ∈ T − {0} (4)

ρ(t+ 1) =
ρ(t)

1 + r(t)d
, t ∈ T − {tmax} (5)

L(t) = L0e
gL(t), t ∈ T (6)

gL(t) = gL0(1− e−gδ(t−1)), t ∈ T − {0} (7)

A(t+ 1) =
A(t)

1− gA(t)
, t ∈ T − {tmax} (8)

gA(t) = gA0e
−gδ(t−1), t ∈ T − {0} (9)

ET (t) = ET0e
−gET (t−1), t ∈ T − {0}. (10)

Output Q is calculated by a typical Cobb-Douglas production function in Eq. (11).
The production factors are labour L, capital K and exogenous technical change A.
The abatement effort µ (∈ [0; 1]) induces a loss of production. An important part
of this equation is the damage function D, Eq. (12), which also affects production.
Impacts of climate change on the economy are not easy to quantify and monetise
even though literature in this field is extensive. Impacts vary among sectors and
countries depending on local or global climate change. Climatic factors such as the
frequencies of storms and floods may have more influence on economic activity than
average temperature. However, mean temperature is used in the damage function
here as an index of climate change, subsuming more complex interactions between
climate and economic variables. A whole chapter of discussion on the calibration of
the damage function can be found in [18].
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Emissions E are a function of the carbon intensity of the production technologies
σ and the abatement effort µ. Deforestation ET adds supplementary emissions.

Q(t) = A(t)L(t)1−γK(t)γ(1− b1µ(t)b2)D(T (t)), t ∈ T (11)
D(t) = (1 + a1T (t) + a2T (t)2)−1, t ∈ T (12)
E(t) = dσ(t)(1− µ(t))A(t)L(t)1−γK(t)γ + ET (t), t ∈ T . (13)

Eq. (14) represents the relation between production Q, consumption C and Invest-
ment I. The inter-periodic relation between Investment I and Capital K is described
in Eq. (15).

Q(t) = C(t) + I(t), t ∈ T (14)
K(t+ 1) = d× I(t) + (1− δ)dK(t), t ∈ T (15)

Finally, Eqs. (16) and (17) control the value of the coupling variables E and T
inside the model. These two equations are very important for the consistency of the
model. At the optimum, the dual variables associated with these equations give the
sensitivity of the model with respect to the bounds Eup and Tlo.

E(t) ≤ Eup(t), t ∈ T − {0} (16)
T (t) ≥ Tlo(t), t ∈ T (17)

The parameters values are shown in table 1. In comparison with DICE-99, equations
related to the the temperature change and the induced forcing have been removed.
These equations are replaced with constraint (17) which imposes that the tempera-
ture change T (t), included in the damage function, is at least equal to the temperature
change bound Tlo(t). The upper-bound on emissions is the other constraint (16) in-
troduced in the economic model. The value Eup(t) is used to compute atmospheric
carbon concentrations that will drive C-GOLDSTEIN for the computation of tem-
perature change Tlo(t). The generation of Eup(t) and Tlo(t) is explained in detail in
the next section.

In the coupled model, we use a compact form of the economic model which
will serve to define a “reduced-order” optimisation problem where a value function
U(Eup, Tlo) is obtained as the maximized discounted utility subject to the constraints
on emissions and temperature changes. This compact-form problem is summarised
as follows

U(Ẽup, T̃lo) = max f(Ẽ, T̃ , υ) (18a)
s.t. ψ(Ẽ, T̃ , υ) ≤ 0, (18b)

Ẽ ≤ Ẽup, (18c)
T̃ ≥ T̃lo, (18d)

where f represents the discounted utility summed over the planning horizon (Eq. (1),
Ẽ = (E(t) : t ∈ T −{tmax}) and T̃ = (T (t) : t ∈ T ) are the emissions and temperature
change schedules, respectively. Ẽup and T̃lo are the upper and lower bound schedules
for Ẽ and T̃ respectively. The vector υ summarizes all the other economic variables
implicated in the model. Eqs. (2)-(15) are summarized in the global Eq. (18b). The
last two Eqs. (18c) and (18d) correspond to Eqs. (16) and (17).
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Table 1: Economy parameters
Parameter Notation Value
Number of years in a period d 10
Depreciation rate on capital per year δ 0.1
Utility function coefficient α 1
Initial rate of social time preference per year r1 0.03
Decline rate of social time preference per year r2 0.0025719
1990 world population millions L0 5632.7
Life rate of population per period gL0 0.7072
Decline rate of pop growth per period gδ 0.222
Initial rate of technology change per period gA0 0.55
Decline rate of technology change per period gδ 0.0016
Emission from deforestation (b.t.c.a per period) ET0 11.28
Decline rate of deforestation per period gET 0.105
ab.t.c.: billion tons of carbon

2.2 The climate model

C-GOLDSTEIN is a flexible geometry, efficient, frictional geostrophic, 3-D global
ocean model with eddy-induced and isopycnal interior mixing coupled with a single-
layer, “Energy and Moisture Balance ” atmosphere and a dynamic and thermody-
namic sea-ice component. With an integration speed of one or two thousand years
per hour on a modern PC, it is an order of magnitude less efficient than the Bern
2.5-D model, but 3 or 4 orders of magnitude faster than conventional, high-resolution
models such as HadCM3 [8] and 1 or 2 orders of magnitude faster than other interme-
diate complexity models such as the UVic model [25]. This efficiency is a result of low
resolution and simplified dynamics. The global-scale ocean circulation is reasonably
well represented, as shown by [9], while feedbacks involving changes in atmospheric
circulation, precipitation patterns, or land-surface processes are relatively poorly
represented or ignored. The model is described briefly in [5], and more fully in [6].
For completeness we give a brief summary of the model dynamics below. Readers
interested only in the coupled problem may skip to the next section.

Ocean The horizontal component uh of the oceanic velocity vector u satisfies the
equation:

f × uh = −∇hp− λuh +
∂

∂z
τ, (19)

which expresses geostrophic balance between the Coriolis force due to the vertical
component, f , of the Earth’s rotation vector and the horizontal component of the
gradient of pressure p, modified by a frictional drag term with coefficient λ. τ is the
wind stress, which acts only at the surface. The vertical velocity is derived from the
mass conservation relation:

∇.u = 0, (20)
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while the momentum balance in the vertical (z) direction:

∂p

∂z
= −gρo(To, S), (21)

relates p (through the gravitational acceleration g) to the ocean density ρo which, in
turn, is a polynomial function of the oceanic temperature To and salinity S. These
are governed by the generic advection-diffusion equation:

∂X

∂t
+∇.(uX) = ∇.(κ∇X) + C, (22)

where X = To or S. Note that throughout this section, the time t is a continuous
variable. The diffusivity κ is a non-diagonal tensor with large components, repre-
senting eddy-induced advection and mixing, resolved along directions (which vary in
time and space) parallel to constant density surfaces plus a very small component
in the vertical direction which causes mixing across density surfaces. The convective
adjustment term, C, mixes To and S vertically to ensure gravitational stability (light
fluid above dense).

Atmosphere The dynamic variables in the one-layer atmosphere are surface air
temperature Ta and surface specific humidity q (note that the temperature values
used as coupling variables are the global averages of Ta for the relevant periods).
The governing equations are

ρahTCpa

(
∂Ta

∂t
+∇.(βTuTa)−∇.(κT∇Ta)

)
= QSWCA+QLW−QPLW +QSH+QLH ,

(23)

ρahq

(
∂q

∂t
+∇.(βquq)−∇.(κq∇q)

)
= ρoc(E − P ) (24)

where hT and hq are atmospheric boundary layer depths for heat and moisture re-
spectively, while κT and κq are eddy diffusivities. κT is given by a simple exponential
function, while κq is constant. E is the evaporation or sublimation rate, P is the pre-
cipitation rate, and ρa and ρoc are constant representative densities for air and water
respectively. Cpa is the specific heat of air at constant pressure. The parameters
βT , βq allow for a linear scaling of the advective transport term, which assumes a
fixed, observationally derived velocity field u. The constant CA parameterizes the
absorption by water vapour, dust, ozone, clouds, etc of incoming shortwave solar ra-
diation QSW . QLW is the long-wave imbalance at the surface. QPLW is the planetary
long-wave radiation to space, given by a polynomial function, cubic in temperature Ta

and quadratic in relative humidity q/qs where qs is the saturation specific humidity:
exponential in the surface temperature. For anthropogenically forced experiments
a greenhouse warming term is added to QPLW which is proportional to the log of
the ratio of carbon dioxide (CO2) concentration compared to a pre-industrial ref-
erence value. The sensible heat flux QSH depends on the air-surface temperature
difference and the surface wind speed (derived from ocean wind-stress data), and
the latent heat release QLH is proportional to the precipitation rate P . Precipitated
moisture is removed instantaneously so that the relative humidity never exceeds a
fixed threshold value.
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Sea ice The fraction of the ocean surface covered by sea ice in any given region is
denoted by A. Dynamical equations are solved for A and for the average height H of
sea ice. In addition a diagnostic equation is solved for the surface temperature Ti of
the ice. Thermodynamic growth or decay of sea ice in the model depends on the net
heat flux into the ice from the ocean and atmosphere. Sea-ice dynamics consist of
advection by the surface current uh and Laplacian diffusion with constant coefficient
κhi.

The growth rate Gi of sea-ice height in the ice-covered ocean fraction is

Gi =
Qb −Qt

ρiLf
− E ρoc

ρi
, (25)

where Lf is the latent heat of fusion of ice, ρi its (constant) density, Qb is the flux
of heat from sea ice to ocean and Qt is the flux of heat from atmosphere to sea ice.
In the open-ocean fraction we take −Qb, to be the largest possible heat flux out of
the ocean. Thus if the ocean-to-atmosphere heat flux is greater than this, the deficit
leads to ice growth in the open water fraction. the growth rate of sea ice in the
open-ocean fraction is therefore

Go = max
(

0,
Qb −Qto

ρiLf

)
, (26)

where Qto is the heat flux from atmosphere to ocean. The rate of change of the
average sea-ice height, H, is then given by

∂H

∂t
+∇.(uhH)− κhi∇2

hH = AGi + (1−A)Go, (27)

where κhi is a horizontal diffusivity. The rate of change of sea-ice area A is given by

∂A

∂t
+∇.(uhA)− κhi∇2

hA = max
(

0, (1−A)
Go

H0

)
+ min

(
0, AGi

A

2H

)
. (28)

The first term on the right hand side parameterizes the possible growth of ice over
open water, where H0 is a minium resolved sea-ice height. The second term param-
eterizes the melting of sea ice.

Solution method Equations are discretized in finite-difference form on a spher-
ical grid with 36 by 36 equal-area cells in the horizontal. The ocean component has
8 vertical levels. The dynamic equations for To, S, Ta, q, H and A are integrated
forwards in time from a uniform initial state for around 5500 years until an almost
exactly steady state is reached. This can be taken to represent the pre-industrial
climate. The model is then integrated forwards with observed atmospheric CO2 con-
centrations from 1795 to 1995 to produce an initial condition for the coupled runs.

Carbon cycle The model carbon cycle could be closed by the inclusion of ocean
biogeochemistry and a land-surface model without significant loss in efficiency. Such
a coupled model is under development through the UK GENIE project, but here, for
simplicity, we use the carbon-cycle dynamics of the DICE model.
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The DICE carbon-cycle module consists of three linked reservoirs: the atmo-
sphere, the upper ocean and biosphere combined, and the deep ocean. The CO2

accumulation and transportation is represented by a linear model. The basic struc-
ture is the following: emissions are added directly to the atmosphere, which commu-
nicates with the upper ocean-biosphere reservoir only. The upper ocean-biosphere
also exchanges carbon with the deep ocean. The carbon cycle is assumed to be in
equilibrium at the start of the coupled simulations. The transfer coefficients of the
linear model are calibrated for a concentration of two times pre-industrial levels.
The reference model is the Bern carbon-cyle model [14]. A full description of the
carbon-cycle module is available in chapter 3 of [18].

3 The reduced-order optimisation problem

In this section we define a reduced-order optimisation problem that involves only
the coupling variables Ẽup and T̃lo which are used to exchange information between
the economic sub-model and the climate sub-model (the term “reduced order” refers
to the fact that only these variables are involved). Recall that Ẽup = (Eup(t) : t ∈
T − {tmax}) and T̃lo = (Tlo(t) : t ∈ T ) are the bounds on emissions and temper-
ature change that are imposed in the economic model written in compact form in
Eqs. (18a)-(18d). Indeed, the emission bounds provide a global emission path that
will drive the climate model, whereas the temperature changes observed in the cli-
mate simulation will impose lower bounds on the temperature change used in the
damage assessment in the economic model.

This reduced-order problem will be amenable to solution via an oracle-based
optimisation technique that we shall describe shortly. It will be convenient to denote
by X = (Ẽup, T̃lo) ∈ Rn the coupling variables which represent the anthropogenic
carbon emissions Ẽup and the temperature changes T̃lo.

The coupled optimisation problem for the integrated model is represented as the
maximisation of an objective function U(X), which values the global utility of the
world over the planning horizon T , subject to Θ(X) ≤ 0, which represents a set of
constraints related to climate change. More precisely

max
X∈Rn

{U(X) | Θ(X) ≤ 0}, (29)

where U(X) is the optimum value for the economy model Eqs. (18a)-(18d) and Θ(X)
is an impact function which controls the economic impact on climate defined as
follows:

Θ(X) = φ(Ẽup)− T̃lo, (30)

where φ is the temperature change path computed by the climate oracle given the
emission path Ẽup.

The optimum in (29) is denoted U∗ and the associated solution isX∗. To solve the
problem, we use an oracle-based method, namely the Proximal-ACCPM algorithm
described in [20]. In this method, at each iteration, given a point Xk ∈ Rn gener-
ated by the Proximal-ACCPM algorithm, the oracle computes optimality cuts and
feasibility cuts, and a lower bound for the optimal value. Referring to the two-oracle
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structure portrayed in figure 1, when optimality cuts are required, it is the economy
oracle which is consulted, whereas feasibility cuts are obtained with information from
the climate oracle. The cuts generated give an outer approximation of a so-called
localisation set in which the optimal solution lies. This localization is defined more
precisely below. The method is guaranteed to converge with a relatively low number
of queries if it deals with a convex optimisation problem. In our case this means that
the function U(X) should be concave and the function Θ(X) should be convex. We
now discuss these assumptions.

3.1 Convexity
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Figure 2: Contour plot of the reduced-order problem.

U(X) is the optimal value of the economic model described in Section 2.1 subject
to emissions and temperature constraints represented by (Ẽsup, T̃lo) and summarized
by X. The utility function, Eq. (2), is a concave function. The production function
in Eq. (13) is concave. The state dynamics, represented by the capital accumulation
Eq. (15) is linear. The value function U(X) is therefore concave by construction [5].

The convexity of Θ(X) is more difficult to prove. The temperature change path
φ(Ẽup) computed by the climate model, which enters in the definition of Θ(X), is
the result of a complex and highly non-linear process. There is no easy way to
guarantee that this function is convex. Furthermore, in contrast to the earlier study
(in [5]) where the climate function returned only one value, here the function Θ(X)
returns a path of values. We therefore have to content ourselves with an “empirical”
observation of convex behaviour of Θ(X) in the domain of interest of X. Note
that convex behaviour of Θ(X) is in line with a basic understanding of the climate
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system, in which increased emissions in any period would lead to non-negative change
in global average temperature for all future times.

Some experiments have been carried out to assess the shape of the reduced-order
model. We choose a four-component coupling variable X = (E100, E200, T100, T200)
where two milestones, at 100 and 200 years, have been chosen. We select 1000
points in a box domain for the value of the emissions E100 and E200. Then we
compute the associated concentrations and temperature change using the modules
of the climate oracle. Finally, we solve the reduced problem with fixed X. We thus
obtain the global welfare for each of these points. Figure 2 represents the resulting
distribution of global welfare as a function of the carbon concentrations after 100 and
200 years. The function appears convex with a more planar region at high values of
concentration.

Although this empirical verification looks encouraging we cannot rule out some
non-convex regions in the domain of Θ(X). Therefore it is necessary to implement a
back-tracking procedure to restart the optimisation process when local non-convexity
causes the algorithm to stall.

3.2 The Proximal-ACCPM Algorithm

In this section, we recall the basic features of the oracle-based optimisation (OBO)
procedure as described in [2]. The convex optimisation problem (29) belongs to the
class of problems that can be solved through an OBO technique: the hypograph of
U(X) (defined as {(X, z) ∈ Rn+1 | z ≤ U(X)}) and the feasible set can be delineated
by a polyhedral outer approximation. We use the Proximal-ACCPM algorithm [20],
an enhanced interior point cutting plane method for convex optimisation problems,
to implement the OBO approach. The algorithm proceeds as follows. Given a point
X̄k, the procedure calls the oracle which tests if this point lies in the feasible set.
If it does, the oracle returns an optimality cut for U(X) (to be defined shortly in
subsection 3.3). If not, the oracle returns a set of feasibility cuts for either the
domain of Θ(X) (see subsection 3.4) or the domain of U(X) (see subsection 3.5).
The intersection of the half-spaces circumscribed by the cuts forms the localization
set, denoted Lk. This polyhedral set corresponds to a superset of the linear outer
approximation of the hypograph of U and contains the optimal solution X∗ and the
associated objective value U∗ = z∗. Proximal-ACCPM, specifically its query point
generator module, chooses the next point X̄k+1 as the analytic center of Lk (see
[2] for a definition of this concept and the Newton procedure to calculate it). The
procedure calls the oracle with the new point and generates one or several new cuts.
A new localization set Lk+1 is thus obtained as follows:

Lk+1 = Lk ∩ {(X, z) | θl ≤ z ≤ U(X̄k), X ∈ {Ok ∪ F k
U ∪ F k

Θ}}, (31)

with L0 = {(X, z) ∈ Rn+1} and where given the iteration k, we define: θl the
highest lower bound obtained during the process; Ok the half-space defined by the
optimality cut if it exists, ∅ otherwise; F k

U the intersection of the half-spaces defined
by the feasibility cuts for the domain of U if they exist, ∅ otherwise and F k

Θ the
intersection of the half-spaces defined by the feasibility cuts for the domain of Θ if
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they exist, ∅ otherwise. The expression (31) defines a set that contains the optimal
pair (X∗, U∗) and which shrinks at each iteration. When the localization set is small
enough, it defines the optimal pair (X∗, U∗) within the prescribed tolerance level and
the procedure ends.

We can thus summarize our implementation of Proximal-ACCPM as follows:

Initialization First, choose a starting point X̄0 = (E0, T 0). Generally, we choose
E0 as the optimal carbon emission pathway of DICE-99 and T 0 as the associated
temperature change pathway computed by C-GOLDSTEIN. Then, the bounds are
initialized as θl = −∞ et θu = +∞ and an optimality tolerance ε is defined.

Proximal-ACCPM iteration k

1. Choose the X̄k as the analytic center of the localization set Lk and an associated
upper bound θ̄u.

2. Call the oracle at X̄k

(a) Compute the value of Θ(X̄k).
(b) If Θ(X̄k) > 0 then generate a feasibility cut for the domain of Θ(X).
(c) If Θ(X̄k) ≤ 0 then solve the problem U(X̄k).

i. If U(X̄k) is infeasible then generate a feasibility cut for the domain of
U(X).

ii. If U(X̄k) is feasible then generate an optimality cut.
θl = max(U(X̄k), θl).

(d) Return the generated cuts and the lower bound.

3. Update the upper bound: θu = min(θ̄u, θu).

4. If θu − θl ≤ ε, stop the procedure.

5. Update Lk+1.

The following sections focus on the calculation of the cuts inside the oracles. From
now on the scalar product of the vectors u and v will be denoted by 〈u, v〉.

3.3 Generation of an optimality cut for U(X)

When X̄ = (Ẽup, T̃lo) belongs to the domain of the reduced-order problem (29),
Proximal-ACCPM generates an optimality cut. An optimality cut for U(X) is a
half-space defined by a supporting plane to the hypograph of the function U(X) at
the given point X̄. It takes the following form

{X ∈ Rn | U(X̄) + 〈ξ, (X − X̄)〉 ≥ U(X)}, (32)

where ξ ∈ ∂U(X̄)1 is a supergradient of the function U at X̄. As defined in Sec-
tion 2.1, U(X̄) is the optimal value of the objective function in the problem (18a)-

1U is a non-differentiable concave function. Therefore we must work with “supergradients” since the
simple gradient ∇X̄ may not be well defined.
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(18d). The Lagrangian form of this problem at the optimum is

f(Ẽ∗, T̃ ∗, υ∗)− 〈w,ψ(Ẽ∗, T̃ ∗, υ∗)〉 − 〈u1, Ẽ
∗ − Ẽup〉 − 〈u2, T̃

∗ − T̃lo〉 (33)

where w, u1 and u2 correspond to the optimal dual values of the Eqs. (18b), (18c)
and (18d), respectively. The supergradient is obtained from the dual variables; i.e.
ξ = (u1, u2).

3.4 Generation of the feasibility cut for Θ(X)

A feasibility cut for Θ(X) defines a half-space E0 that contains the feasibility set
which contains X∗ ∈ E0. This half-space is defined by the expression

{X ∈ Rn | 〈∇Θ(X̄), (X − X̄)〉+ Θ(X̄) ≤ 0}, (34)

where ∇Θ(X̄) is the Jacobian matrix of Θ at X̄. Let p and q be the numbers of
components of the subvectors Ē and T̄ , respectively. Using Eq. (30), the Jacobian
matrix is ∇Θ(X̄) =

(
∇φ(Ē),−I

)
where I is the identity matrix with dimension q.

The Jacobian matrix ∇φ(Ē) can only be evaluated numerically by the climate oracle.
We use a finite difference method to approximate it.

∇φij(Ē) =
∂φi

∂Ēj
≈ φi(Ē + εej)− φi(Ē)

ε
, i = 1, . . . , q, j = 1, . . . , p (35)

where ε > 0 represents a perturbation in the carbon emission pathway and ej =
(0, . . . , 0, 1i, 0, . . . , 0). φi(Ē) is the temperature change pathway given the emissions
Ē. ∇φ(Ē) is a matrix with p rows and q columns:

∇φ(Ē) =

 ∇φ11(Ē) · · · ∇φ1p(Ē)
...

. . .
...

∇φq1(Ē) · · · ∇φqp(Ē)

 . (36)

A column vector is obtained with a single climate simulation (that is, a single run of
C-GOLDSTEIN plus DICE carbon cycle): the first column of the matrix corresponds
to the temperature change pathway given a pertubation of the carbon emissions
in period 1, for the second column the pertubation occurs in period 2 and so on.
Therefore we need p+ 1 climate simulations to calculate the entire Jacobian matrix
(one simulation is needed to obtain the vector φi(Ē)). The climate simulation is
a dynamic process, so a perturbation in the carbon emission pathway should only
affect the temperature changes of the following periods. The partial derivatives of the
periods preceding the pertubation are therefore equal to zero. The Jacobian matrix
can thus be rewritten in the following form:

∇φ(Ē) ≈

 ∇φ11(Ē) 0 0
...

. . . 0
∇φq1(Ē) · · · ∇φqp(Ē)

 . (37)

The C-GOLDSTEIN and DICE carbon cycle models have the capability to “warm
start” in beginning the simulation at a given “state of the world” which consists

14



in a set of variables and values which describe their view of the world at a given
moment. The “states of the world” are recorded during the computation of φ(Ē) and
in computing the Jacobian matrix we can reduce the time horizon of the simulation
for each new computed column vector. This technique reduces by almost a factor of 2
the total time of calculation of the Jacobian matrix. We may envisage more significant
gains by implementing automatic differentiation within the climate model.

3.5 Generation of feasibility cuts for the domain of U

In practice, it is not necessary to generate feasibility cuts for the domain of U . It is
easy to find a set of values for Ẽup and T̃lo that are of interest and make U feasible.
We denote by DU this subset of the domain of the function U . From Eqs. (13), we
deduce that the lowest values for Ẽup are the exogenous deforestation emissions ET ,
defined by (ET (t) : t ∈ T − {tmax}). Conversely, experience suggests that +10◦C
represents a sufficient upper bound for the temperature change. We thus define

DU = {(Ẽup, T̃lo) | Ẽup ∈ [ET ; +∞], T̃lo ∈ [−∞; 10]}. (38)

Although feasibility cuts are not required for the domain of U in our case, they
could readily be calculated in the following way. Let X̄ be a point which does not
belong to the domain of U . We need to solve the following auxiliary problem obtained
from Eqs. (18) by introducing artificial variables in the constraints and replacing the
objective U(X) by the maximum value of the artificial variables.

min ι = max(ι1, ι2) (39a)
s.t. ψ(Ẽ, T̃ , υ) ≤ 0, (39b)
Ẽ − Eup − ι1 ≤ 0, (39c)
T̃ − Tlo + ι2 ≥ 0, (39d)
ι1, ι2 ≥ 0. (39e)

We then introduce the feasibility cut:

{X ∈ Rn | 〈γ, (X − X̄)〉+ ι∗ ≤ 0}, (40)

where γ is the dual value associated to Eqs. (39c-39d) when the optimal value ι∗ is
obtained.

4 Implementation issues

4.1 Technical details

The coupled model was implemented on a Linux machine with 2×2.4 GHz proces-
sors. An effort was made to create a flexible and expansible structure composed of
independent modules. The introduction of a new module or the replacement of an
existing module is relatively easy. Each module has a directory dedicated to the
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inputs, the outputs and the executable code. The economic growth module and the
carbon-cycle module are written in GAMS. C-GOLDSTEIN is written in FORTRAN.
Proximal-ACCPM is written in the MATLAB language. The master program is also
written in MATLAB. Its role is to initialize Proximal-ACCPM and to exchange infor-
mation with each module. The MATLAB language provides tools to create and read
formatted text files but also powerful tools for building mathematical objects needed
by Proximal-ACCPM. Figure 3 shows an overview of the GOLDICE structure and
the communications between the parts of the model. Table 2 reports details of the
nature of these parts, the inputs and outputs they accept and the time they need to
run. Currently, the communication between the different parts is achieved by reading
and writing files in a dedicated directory but the program should be easily adaptable
to an XML-based description and encapsulation of data.

ECONOMY

ACCPM

CC

C-GOLDSTEIN�

6

?

�

-

MASTER

-

Figure 3: GOLDICE structure: arrows show physical data exchange between sub-programs.

Table 2: GOLDICE components
Name Description Call time

C-GOLDSTEIN Climate model 5 min.
ECONOMY Economy growth 0.15 s.

CC Carbon-cycle ∼
ACCPM Search algorithm 0.05 s.

MASTER Director ∼

4.2 Numerical results

We now compare the results of GOLDICE with those of DICE-99. Two different
runs have been made to test the method. We compute the optimal policy for a
200-year (GOLDICE-200) and a 400-year (GOLDICE-400) run and we compare the
results with those obtained with DICE-99 running along a similar number of periods.
Figure 4 plots the values of objective function of the reduced-order problem for
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Figure 4: Convergence of the objective values (the discounted global welfare) for GOLDICE
for two different run lengths and two different starting points.

Table 3: Total discounted welfare values for DICE-99 and GOLDICE.
200-year run 400-year run

DICE-99 22’570.20 -58’647.20
GOLDICE 22’630.46 -58’410.55

the two runs and for two different starting points: optimal, which is the DICE-99
optimal solution and b.a.u., which is the DICE-99 optimal solution without emission
abatement. The graphs show the convergence of the method for the two cases. The
method goes towards a solution close to optimality in a relatively small number of
iterations. GOLDICE-400 is much harder and more time-consuming to solve: the
computation of a gradient corresponds to several successive calls to C-GOLDSTEIN
and the time of computation increases with the augmentation of the time horizon. A
typical GOLDICE-400 gradient computation costs one hour and a half of computation
against 30 minutes for GOLDICE-200. The generation of a feasibility cut is thus
very costly. Beginning with a good starting point reduces dramatically the number
of feasibility cuts and thus the total time taken to solve the problem. The total
discounted welfare values obtained with the 2 models are shown in table 3, we observe
relatively close values. Figures 5 and 6 report the behaviour of the key variables of
GOLDICE and DICE-99 for the 200-year run and the 400-year run respectively.
The figures reproduce only the capital accumulation path because the differences
between GOLDICE and DICE-99 are small for the other economic variables. More
differences appear in the coupling variables: Emissions and Temperature change.
GOLDICE-200 results are little bit more restrictive on the economy. The optimal
emissions path is 2 Gt per year lower at the end of the 200 years for GOLDICE-200
in comparison with DICE-99. Temperature change is equal to 2.8◦C after 200 years
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Figure 5: Optimal policies for DICE-99 and GOLDICE-200 with a 200-year run
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Figure 6: Optimal policies for DICE-99 and GOLDICE-400 with a 400-year run
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which is 0.4◦C colder than DICE-99. We observe similar results with GOLDICE-
400. Figure 5 plots the temperature changes from C-GOLDSTEIN for an optimal
carbon path of DICE-99 over 200 years versus temperature changes computed by
DICE-99. The C-GOLDSTEIN curve is closer to a linear trend than the DICE-99
curve but the distance between the two curves is relatively small. This suggests
that the basic climate sensitivity of DICE-99 is similar to that of C-GOLDSTEIN,
and that no significantly nonlinear changes occur, such as major reorganisation of
the ocean circulation. In both models the basic atmospheric sensitivity to changes
in radiative forcing via CO2 changes corresponds to a single, adjustable parameter
value. The key climate sensitivity parameter of the DICE-99 module gives a warming
of 2.9◦C associated with a doubling of the carbon concentration in the atmosphere
(the same value was found for C-GOLDSTEIN in [9]) which is 0.4◦C warmer than
the average estimated value suggested by the IPCC, although this value is not well
constrained by data or numerical models. The added value of using an intermediate
complexity model such as C-GOLDSTEIN is the large amount of extra information
on climate variables, for instance, the spatial distribution of air temperature and the
ocean circulation. Figure 7 shows the surface air temperature increase at the end of
the run after 200 years in the final GOLDICE-200 solution and the difference between
this and the corresponding temperature field when the climate model is forced by
the DICE emissions. The pattern of global warming shows the usual polar and
continental amplification, with weaker warming in the North Atlantic and southern
ocean regions. The DICE solution is warmer by 0.1 to 0.18 C, with a peak in the
southern ocean related to temporal changes in convection close to the Antarctic shelf.
Figure 8 shows the overturning streamfunction in the Atlantic (a potential function
for the integrated mass transport in a vertical-latitude plane – a representation of
the thermohaline circulation). The top plot shows the initial overturning, the middle
plot, the change in overturning in the final state, relative to the initial state, and the
lower plot the difference between GOLDICE and DICE solutions. Warming leads to
a reduction in the maximum overturning from 18 Sv to 17 Sv (1 Sv = 106 m3s−1)
accompanied by a reduction in the depth of the overturning cell, the changes being
slightly more pronounced in the DICE-forced solution.

5 Conclusion

In this paper, we have shown how to integrate a time-dependent (simulation) climate
model within an optimisation framework. We have succeeded in exchanging the
DICE-99 temperature module for an intermediate complexity 3-D climate model,
thus giving a climate representation within the globally aggregated economic growth
model which is more rationally derived from fundamental physical principles and
thus able to respond in a more faithful way to calculated changes in emissions.

Although the results of the present coupled model tend to show that DICE-99 was
already capturing much of the information on possible globally averaged temperature
change, the proposed coupling technique provides interesting avenues for further IAM
developments. In principle our climate model can provide more information than the
globally averaged temperature change. It can also supply regionalised information
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Figure 7: Increase in surface air temperature at the end of the run in the GOLDICE-200 so-
lution in Celcius, upper panel, and the difference between this state and the corresponding
state forced by DICE emissions, lower panel.

on temperature, humidity and precipitation change. Changes in the Atlantic ther-
mohaline circulation, for example, could be directly calculated and used in a damage
function.

The incorporation of physically based climate models lends considerable credi-
bility to the results of an integrated assessment modelling exercise compared to the
use of simple temperature change functions as in the original DICE model. The full
potential of IAMs using more elaborate climate models, however, will only be realised
when the extra information they can provide is fully utilised. Future research will
focus on replacing the economy model with a more encompassing one, like e.g. the
ICEMODE model of ICLIPS or the ETA-MACRO model of ICLIPS. This coupling
would add a regional scale for the economy and will permit the use of a more rep-
resentative regionalised damage function. A further important improvement to the
present model will be the incorporation of a consistent carbon cycle representation
within the climate model.
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