6,354 research outputs found
The Overdensity in Virgo, Sagittarius Debris, and the Asymmetric Spheroid
We investigate the relationship between several previously identified
Galactic halo stellar structures in the direction of Virgo using imaging and
spectroscopic observations of F turnoff stars and blue horizontal branch stars
from the Sloan Digital Sky Survey (SDSS) and the Sloan Extension for Galactic
Understanding and Exploration (SEGUE). We show that the Sagittarius dwarf
leading tidal tail does not pass through the solar neighborhood; it misses the
Sun by more than 15 kpc, passing through the Galactic plane outside the Solar
Circle. It also is not spatially coincident with the large stellar overdensity
S297+63-20.5 in the Virgo constellation. S297+63-20.5 has a distinct turnoff
color and kinematics. Faint (g ~ 20.3) turnoff stars in S297+63-20.5 have
line-of-sight, Galactic standard of rest velocities V(GSR)= 130 +/- 10 km/s,
opposite in sign to infalling Sgr tail stars. The path of the Sgr leading tidal
tail is also inconsistent with the positions of some of the nearer stars with
which it has been associated, and whose velocities have favored models with
prolate Milky Way potentials. We additionally show that the number densities of
brighter (g ~ 19.8) F turnoff stars are not symmetric about the Galactic
center, and that this discrepancy is not primarily due to the S297+63-20.5
moving group. Either the spheroid is asymmetric about the Galactic center, or
there are additional substructures that conspire to be on the same side of the
Galaxy as S297+63-20.5. The S297+63-20.5 overdensity in Virgo is likely
associated with two other previously identified Virgo substructures: the Virgo
Stellar Stream (VSS) and the Virgo Overdensity (VOD). However, the velocity
difference between the VSS and S297+63-20.5 and the difference in distance
estimates between the VOD and S297+63-20.5 must be reconciled.Comment: 10 figures, ApJ in pres
Higher order corrections to lensing parameters for extended gravitational lenses
We discuss the contribution to the characteristic lensing quantities, i.e.
the deflection angle and Einstein radius, due to the higher order terms (e.g.
the gravitomagnetic terms) considered in the lens potential.
The cases we analyze are the singular isothermal sphere and the disk of
spiral galaxies. It is possible to see that the perturbative effects could be
of the order 10^{-3} with respect to the ordinary terms of weak field and thin
lens approximations, so that it is not a far hypothesis to obtain evidences of
them in a next future by suitable experiments.Comment: 7 pages, LaTex file, to appear on Phys. Lett.
Approximation of corner polyhedra with families of intersection cuts
We study the problem of approximating the corner polyhedron using
intersection cuts derived from families of lattice-free sets in .
In particular, we look at the problem of characterizing families that
approximate the corner polyhedron up to a constant factor, which depends only
on and not the data or dimension of the corner polyhedron. The literature
already contains several results in this direction. In this paper, we use the
maximum number of facets of lattice-free sets in a family as a measure of its
complexity and precisely characterize the level of complexity of a family
required for constant factor approximations. As one of the main results, we
show that, for each natural number , a corner polyhedron with basic
integer variables and an arbitrary number of continuous non-basic variables is
approximated up to a constant factor by intersection cuts from lattice-free
sets with at most facets if and that no such approximation is
possible if . When the approximation factor is allowed to
depend on the denominator of the fractional vertex of the linear relaxation of
the corner polyhedron, we show that the threshold is versus .
The tools introduced for proving such results are of independent interest for
studying intersection cuts
Gravitomagnetic corrections to the lensing deflection angle for spiral galaxy models
We investigate the effects of the gravitomagnetic corrections to the usual
gravitational lens quantities for a specific lensing mass distribution modelled
after spiral galaxies. An exponential disk is embedded into two different
spherical halo models where disk and haloes parameters are fixed according to
the observed mass to light ratios, galaxy magnitudes and rotation curves. The
general expressions for the lensing deflection angle are given also taking into
account the orientation of the galaxy disk plane with respect to the lens
plane. It is found that the gravitomagnetic term changes the deflection angle
by a typical amount of the order of ten microarcseconds.Comment: 7 pages, 2 figures, accepted for publication on MNRA
Machine and human observable differences in groups’ collaborative problem-solving behaviours
This paper contributes to our understanding of how to design learning analytics to capture and analyse collaborative problem-solving (CPS) in practice-based learning activities. Most research in learning analytics focuses on student interaction in digital learning environments, yet still most learning and teaching in schools occurs in physical environments. Investigation of student interaction in physical environments can be used to generate observable differences among students, which can then be used in the design and implementation of Learning Analytics. Here, we present several original methods for identifying such differences in groups CPS behaviours. Our data set is based on human observation, hand position (fiducial marker) and heads direction (face recognition) data from eighteen students working in six groups of three. The results show that the high competent CPS groups spend an equal distribution of time on their problem-solving and collaboration stages. Whereas, the low competent CPS groups spend most of their time in identifying knowledge and skill deficiencies only. Moreover, as machine observable data shows, high competent CPS groups present symmetrical contributions to the physical tasks and present high synchrony and individual accountability values. The findings have significant implications on the design and implementation of future learning analytics systems
Boosting BCG with recombinant modified vaccinia ankara expressing antigen 85A: Different boosting intervals and implications for efficacy trials
Objectives. To investigate the safety and immunogenicity of boosting BCG with modified vaccinia Ankara expressing antigen
85A (MVA85A), shortly after BCG vaccination, and to compare this first with the immunogenicity of BCG vaccination alone and
second with a previous clinical trial where MVA85A was administered more than 10 years after BCG vaccination. Design. There
are two clinical trials reported here: a Phase I observational trial with MVA85A; and a Phase IV observational trial with BCG.
These clinical trials were all conducted in the UK in healthy, HIV negative, BCG naı¨ve adults. Subjects were vaccinated with BCG
alone; or BCG and then subsequently boosted with MVA85A four weeks later (short interval). The outcome measures, safety
and immunogenicity, were monitored for six months. The immunogenicity results from this short interval BCG prime–MVA85A
boost trial were compared first with the BCG alone trial and second with a previous clinical trial where MVA85A vaccination
was administered many years after vaccination with BCG. Results. MVA85A was safe and highly immunogenic when
administered to subjects who had recently received BCG vaccination. When the short interval trial data presented here were
compared with the previous long interval trial data, there were no significant differences in the magnitude of immune
responses generated when MVA85A was administered shortly after, or many years after BCG vaccination. Conclusions. The
clinical trial data presented here provides further evidence of the ability of MVA85A to boost BCG primed immune responses.
This boosting potential is not influenced by the time interval between prior BCG vaccination and boosting with MVA85A. These
findings have important implications for the design of efficacy trials with MVA85A. Boosting BCG induced anti-mycobacterial
immunity in either infancy or adolescence are both potential applications for this vaccine, given the immunological data
presented here. Trial Registration. ClinicalTrials.Oxford University was the sponsor for all the clinical trials reported here
Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus
Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory
Time-dependent bending rigidity and helical twist of DNA by rearrangement of bound HU protein
HU is a protein that plays a role in various bacterial processes including compaction, transcription and replication of the genome. Here, we use atomic force microscopy to study the effect of HU on the stiffness and supercoiling of double-stranded DNA. First, we measured the persistence length, height profile, contour length and bending angle distribution of the DNA–HU complex after different incubation times of HU with linear DNA. We found that the persistence and contour length depend on the incubation time. At high concentrations of HU, DNA molecules first become stiff with a larger value of the persistence length. The persistence length then decreases over time and the molecules regain the flexibility of bare DNA after ~2 h. Concurrently, the contour length shows a slight increase. Second, we measured the change in topology of closed circular relaxed DNA following binding of HU. Here, we observed that HU induces supercoiling over a similar time span as the measured change in persistence length. Our observations can be rationalized in terms of the formation of a nucleoprotein filament followed by a structural rearrangement of the bound HU on DNA. The rearrangement results in a change in topology, an increase in bending flexibility and an increase in contour length through a decrease in helical pitch of the duplex.Singapore-MIT Alliance for Research and Technolog
Cancer risks following diagnostic and therapeutic radiation exposure in children
The growing use of interventional and fluoroscopic imaging in children represents a tremendous benefit for the diagnosis and treatment of benign conditions. Along with the increasing use and complexity of these procedures comes concern about the cancer risk associated with ionizing radiation exposure to children. Children are considerably more sensitive to the carcinogenic effects of ionizing radiation than adults, and children have a longer life expectancy in which to express risk. Numerous epidemiologic cohort studies of childhood exposure to radiation for treatment of benign diseases have demonstrated radiation-related risks of cancer of the thyroid, breast, brain and skin, as well as leukemia. Many fewer studies have evaluated cancer risk following diagnostic radiation exposure in children. Although radiation dose for a single procedure might be low, pediatric patients often receive repeated examinations over time to evaluate their conditions, which could result in relatively high cumulative doses. Several cohort studies of girls and young women subjected to multiple diagnostic radiation exposures have been informative about increased mortality from breast cancer with increasing radiation dose, and case-control studies of childhood leukemia and postnatal diagnostic radiation exposure have suggested increased risks with an increasing number of examinations. Only two long-term follow-up studies of cancer following cardiac catheterization in childhood have been conducted, and neither reported an overall increased risk of cancer. Most cancers can be induced by radiation, and a linear dose-response has been noted for most solid cancers. Risks of radiation-related cancer are greatest for those exposed early in life, and these risks appear to persist throughout life
- …