1,351 research outputs found

    A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum.

    Get PDF
    The current model for hemoglobin ingestion and transport by intraerythrocytic Plasmodium falciparum malaria parasites shares similarities with endocytosis. However, the model is largely hypothetical, and the mechanisms responsible for the ingestion and transport of host cell hemoglobin to the lysosome-like food vacuole (FV) of the parasite are poorly understood. Because actin dynamics play key roles in vesicle formation and transport in endocytosis, we used the actin-perturbing agents jasplakinolide and cytochalasin D to investigate the role of parasite actin in hemoglobin ingestion and transport to the FV. In addition, we tested the current hemoglobin trafficking model through extensive analysis of serial thin sections of parasitized erythrocytes (PE) by electron microscopy. We find that actin dynamics play multiple, important roles in the hemoglobin transport pathway, and that hemoglobin delivery to the FV via the cytostomes might be required for parasite survival. Evidence is provided for a new model, in which hemoglobin transport to the FV occurs by a vesicle-independent process

    Continuum and Emission-Line Properties of Broad Absorption Line Quasars

    Full text link
    We investigate the continuum and emission-line properties of 224 broad absorption line quasars (BALQSOs) with 0.9<z<4.4 drawn from the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR), which contains 3814 bona fide quasars. We find that low-ionization BALQSOs (LoBALs) are significantly reddened as compared to normal quasars, in agreement with previous work. High-ionization BALQSOs (HiBALs) are also more reddened than the average nonBALQSO. Assuming SMC-like dust reddening at the quasar redshift, the amount of reddening needed to explain HiBALs is E(B-V)~0.023 and LoBALs is E(B-V)~0.077 (compared to the ensemble average of the entire quasar sample). We find that there are differences in the emission-line properties between the average HiBAL, LoBAL, and nonBAL quasar. These differences, along with differences in the absorption line troughs, may be related to intrinsic quasar properties such as the slope of the intrinsic (unreddened) continuum; more extreme absorption properties are correlated with bluer intrinsic continua. Despite the differences among BALQSO sub-types and nonBALQSOs, BALQSOs appear to be drawn from the same parent population as nonBALQSOs when both are selected by their UV/optical properties. We find that the overall fraction of traditionally defined BALQSOs, after correcting for color-dependent selection effects due to different SEDs of BALQSO and nonBALQSOs, is 13.4+/-1.2% and shows no significant redshift dependence for 1.7<z<3.45. After a rough completeness correction for the effects of dust extinction, we find that approximately one in every six quasars is a BALQSO.Comment: 35 pages, 11 figures (1 color), 1 table; accepted by A

    Emergence of microfrequency comb via limit cycles in dissipatively coupled condensates

    Get PDF
    Self-sustained oscillations, limit cycles, are a fundamental phenomenon unique to nonlinear dynamic systems of high-dimensional phase space. They enable understanding of a wide range of cyclic processes in natural, social and engineering systems. Here we show that limit cycles form in coupled polariton cavities following the breaking of Josephson coupling, leading to frequency-comb emission. The limit cycles and destruction of Josephson coupling both appear due to interplay between strong polariton-polariton interaction and a dissipative contribution to the cavity coupling. The resulting nonlinear dynamics of the condensates is characterized by asymmetric population distribution and nontrivial average phase difference between the two condensates, and by time-periodic modulation of their amplitudes and phases. The latter is manifested by coherent emission of new equidistant frequency components. The emission spectrum resembles that of a micro-frequency comb, but originates from a fundamentally different mechanism than that of existing frequency combs. It allows non-resonant excitation with a power input much below the conventional semiconductor laser threshold. The comb line spacing is determined by the interaction and coupling strengths, and is adjustable up to multi-terahertz frequency. The work establishes coupled polariton cavities as an experimental platform for rich nonlinear dynamic phenomena.PostprintPeer reviewe

    Evidence for Reionization at z ~ 6: Detection of a Gunn-Peterson Trough in a z=6.28 Quasar

    Get PDF
    We present moderate resolution Keck spectroscopy of quasars at z=5.82, 5.99 and 6.28, discovered by the Sloan Digital Sky Survey (SDSS). We find that the Ly Alpha absorption in the spectra of these quasars evolves strongly with redshift. To z~5.7, the Ly Alpha absorption evolves as expected from an extrapolation from lower redshifts. However, in the highest redshift object, SDSSp J103027.10+052455.0 (z=6.28), the average transmitted flux is 0.0038+-0.0026 times that of the continuum level over 8450 A < lambda < 8710 A (5.95<z(abs)<6.16), consistent with zero flux. Thus the flux level drops by a factor of >150, and is consistent with zero flux in the Ly Alpha forest region immediately blueward of the Ly Alpha emission line, compared with a drop by a factor of ~10 at z(abs)~5.3. A similar break is seen at Ly Beta; because of the decreased oscillator strength of this transition, this allows us to put a considerably stronger limit, tau(eff) > 20, on the optical depth to Ly Alpha absorption at z=6. This is a clear detection of a complete Gunn-Peterson trough, caused by neutral hydrogen in the intergalactic medium. Even a small neutral hydrogen fraction in the intergalactic medium would result in an undetectable flux in the Ly Alpha forest region. Therefore, the existence of the Gunn-Peterson trough by itself does not indicate that the quasar is observed prior to the reionization epoch. However, the fast evolution of the mean absorption in these high-redshift quasars suggests that the mean ionizing background along the line of sight to this quasar has declined significantly from z~5 to 6, and the universe is approaching the reionization epoch at z~6.Comment: Revised version (2001 Sep 4) accepted by the Astronomical Journal (minor changes

    Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey

    Get PDF
    We report the discovery of five quasars with redshifts of 4.67 - 5.27 and z'-band magnitudes of 19.5-20.7 M_B ~ -27. All were originally selected as distant quasar candidates in optical/near-infrared photometry from the Sloan Digital Sky Survey (SDSS), and most were confirmed as probable high-redshift quasars by supplementing the SDSS data with J and K measurements. The quasars possess strong, broad Lyman-alpha emission lines, with the characteristic sharp cutoff on the blue side produced by Lyman-alpha forest absorption. Three quasars contain strong, broad absorption features, and one of them exhibits very strong N V emission. The amount of absorption produced by the Lyman-alpha forest increases toward higher redshift, and that in the z=5.27 object (D_A ~ 0.7) is consistent with a smooth extrapolation of the absorption seen in lower redshift quasars. The high luminosity of these objects relative to most other known objects at z >~ 5 makes them potentially valuable as probes of early quasar properties and of the intervening intergalactic medium.Comment: 13 pages in LaTex format, two postscirpt figures. Submitted to the Astronomical Journa

    Testing the Asteroseismic Mass Scale Using Metal-Poor Stars Characterized with APOGEE and Kepler

    Get PDF
    Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation frequency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher (=0.17+/-0.05 Msun) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 Msun level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ~100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.Comment: 4 figures; 1 table. Accepted to ApJ

    High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data II: The Spring Equatorial Stripe

    Get PDF
    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u'g'r'i'z') imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from ~250 deg^2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of sky. Our success rate of identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92 and 5.03). All the quasars have i* < 20.2 with absolute magnitude -28.8 < M_B < -26.1 (h=0.5, q_0=0.5). Several of the quasars show unusual emission and absorption features in their spectra, including an object at z=4.62 without detectable emission lines, and a Broad Absorption Line (BAL) quasar at z=4.92.Comment: 28 pages, AJ in press (Jan 2000), final version with minor changes; high resolution finding charts available at http://www.astro.princeton.edu/~fan/paper/qso2.htm

    High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data IV: Luminosity Function from the Fall Equatorial Stripe Sampl

    Get PDF
    This is the fourth paper in a series aimed at finding high-redshift quasars from five-color imaging data taken along the Celestial Equator by the SDSS. during its commissioning phase. In this paper, we use the color-selected sample of 39 luminous high-redshift quasars presented in Paper III to derive the evolution of the quasar luminosity function over the range of 3.6<z<5.0, and -27.5<M_1450<-25.5 (Omega=1, H_0=50 km s^-1 Mpc^-1). We use the selection function derived in Paper III to correct for sample incompleteness. The luminosity function is estimated using three different methods: (1) the 1/V_a estimator; (2) a maximum likelihood solution, assuming that the density of quasars depends exponentially on redshift and as a power law in luminosity and (3) Lynden-Bell's non-parametric C^- estimator. All three methods give consistent results. The luminous quasar density decreases by a factor of ~ 6 from z=3.5 to z=5.0, consistent with the decline seen from several previous optical surveys at z<4.5. The luminosity function follows psi(L) ~ L^{-2.5} for z~4 at the bright end, significantly flatter than the bright end luminosity function psi(L) \propto L^{-3.5} found in previous studies for z<3, suggesting that the shape of the quasar luminosity function evolves with redshift as well, and that the quasar evolution from z=2 to 5 cannot be described as pure luminosity evolution. Possible selection biases and the effect of dust extinction on the redshift evolution of the quasar density are also discussed.Comment: AJ accepted, with minor change

    Early-type galaxies in the SDSS. I. The sample

    Get PDF
    A sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. This paper describes how the sample was selected, presents examples of images and seeing corrected fits to the observed surface brightness profiles, describes our method for estimating K-corrections, and shows that the SDSS spectra are of sufficiently high quality to measure velocity dispersions accurately. It also provides catalogs of the measured photometric and spectroscopic parameters. In related papers, these data are used to study how early-type galaxy observables, including luminosity, effective radius, surface brightness, color, and velocity dispersion, are correlated with one another.Comment: 63 pages, 21 figures. Accepted by AJ (scheduled for April 2003). This paper is part I of a revised version of astro-ph/0110344. The full version of Tables 2 and 3, i.e. the tables listing the photometric and spectroscopic parameters of ~ 9000 galaxies, are available at http://astrophysics.phys.cmu.edu/~bernardi/SDSS/Etypes/TABLE
    corecore