132 research outputs found

    Relatedness facilitates cooperation in the subsocial spider, Stegodyphus tentoriicola

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cooperative hunting and foraging in spiders is rare and prone to cheating such that the actions of selfish individuals negatively affect the whole group. The resulting social dilemma may be mitigated by kin selection since related individuals lose indirect fitness benefits by acting selfishly. Indeed, cooperation with genetic kin reduces the disadvantages of within-group competition in the subsocial spider <it>Stegodyphus lineatus</it>, supporting the hypothesis that high relatedness is an important pre-adaptation in the transition to sociality in spiders. In this study we examined the consequences of group size and relatedness on cooperative feeding in the subsocial spider <it>S. tentoriicola</it>, a species suggested to be at the transition to permanent sociality.</p> <p>Results</p> <p>We formed groups of 3 and 6 spiders that were either siblings or non-siblings. We found that increasing group size negatively affected feeding efficiency but that these negative effects were reduced in sib-groups. Sib groups were more likely to feed cooperatively and all group members grew more homogenously than groups of unrelated spiders. The measured differences did not translate into differential growth or mortality during the experimental period of 8 weeks.</p> <p>Conclusion</p> <p>The combination of our results with those from previous studies indicates that the conflict between individual interests and group interests may be reduced by nepotism and that the latter promote the maintenance of the social community.</p

    Mate availability does not influence mating strategies in males of the sexually cannibalistic spider Argiope bruennichi

    Get PDF
    Background Sexual selection theory predicts that male investment in a current female should be a function of female density and male competition. While many studies have focused on male competition, the impact of female density on male mating investment has been widely neglected. Here, we aimed to close this gap and tested effects of mate density on male mating decisions in the orb-web spider Argiope bruennichi. Males of this species mutilate their genitalia during copulation, which reduces sperm competition and limits their mating rate to a maximum of two females (bigyny). The mating rate is frequently further reduced by female aggression and cannibalization. Males can reduce the risk of cannibalism if they jump off the female in time, but will then transfer fewer sperm. An alternative solution of this trade-off is to copulate longer, commit self-sacrifice and secure higher minimal paternity. The self-sacrificial strategy may be adaptive if prospective mating chances are uncertain. In A. bruennichi, this uncertainty may arise from quick changes in population dynamics. Therefore, we expected that males would immediately respond to information about low or high mate availability and opt for self-sacrifice after a single copulation under low mate availability. If male survival depends on information about prospective mating chances, we further predicted that under high mate availability, we would find a higher rate of males that leave the first mating partner to follow a bigynous mating strategy. Method We used naĂŻve males and compared their mating decisions among two treatments that differed in the number of signalling females. In the high mate availability treatment, males perceived pheromone signals from four adult, virgin females, while in the low mate availability treatment only one of four females was adult and virgin and the other three were penultimate and unreceptive. Results Males took more time to start mate searching if mate availability was low. However, a self-sacrificial strategy was not more likely under low mate availability. We found no effects of treatment on the duration of copulation, the probability to survive the first copulation or the probability of bigyny. Interestingly, survival chances depended on male size and were higher in small males. Discussion Our results do not support the hypothesis that mate density variation affects male mating investment, although they clearly perceived mate density, which they presumably assessed by pheromone quantity. One reason for the absence of male adjustments to mating tactics could be that adaptations to survive female attacks veil adaptations that facilitate mating decisions

    One-shot genitalia are not an evolutionary dead end - Regained male polygamy in a sperm limited spider species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, <it>Nephila senegalensis</it>.</p> <p>Results</p> <p>Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps.</p> <p>Conclusion</p> <p>By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in <it>Nephila </it>although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies.</p

    The jumping spider Saitis barbipes lacks a red photoreceptor to see its own sexually dimorphic red coloration

    Get PDF
    Examining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter “spider-greens” to S. barbipes than the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed

    Determinants of Natural Mating Success in the Cannibalistic Orb-Web Spider Argiope bruennichi

    Get PDF
    Monogynous mating systems (low male mating rates) occur in various taxa and have evolved several times independently in spiders. Monogyny is associated with remarkable male mating strategies and predicted to evolve under a male-biased sex ratio. While male reproductive strategies are well documented and male mating rates are easy to quantify, especially in sexually cannibalistic species, female reproductive strategies, the optimal female mating rate, and the factors that affect the evolution of female mating rates are still unclear. In this study, we examined natural female mating rates and tested the assumption of a male-biased sex ratio and female polyandry in a natural population of Argiope bruennichi in which we controlled female mating status prior to observations. We predicted variation in female mating frequencies as a result of spatial and temporal heterogeneity in the distribution of mature females and males. Females had a low average mating rate of 1.3 and the majority copulated only once. Polyandry did not entirely result from a male-biased sex-ratio but closely matched the rate of male bigamy. Male activity and the probability of polyandry correlated with factors affecting pheromone presence such as virgin females' density. We conclude that a strong sex ratio bias and high female mating rates are not necessary components of monogynous mating systems as long as males protect their paternity effectively and certain frequencies of bigyny stabilise the mating system

    Differential Mortality and Relative Maternal Investment in Different Life Stages in Stegodyphus lineatus (Araneae, Eresidae)

    No full text
    Volume: 24Start Page: 148End Page: 15

    Nephila senegalensis SIZE data

    No full text
    This is an original dataset providing data on adult size in the study species Nephila senegalensis

    Data from: Socially cued developmental plasticity in web-building spiders

    No full text
    Background: Socially cued anticipatory plasticity (SCAP) has been proposed as a widespread mechanism of adaptive life-history shifts in semelparous species with extreme male mating investment. Such mating systems evolved several times independently in spiders and male reproductive success should critically depend on timely maturation and rapid location of a receptive and, ideally, virgin female. We experimentally investigated socially cued anticipatory plasticity in two sympatric, closely related Nephila species that share many components of their mating systems, but differ in the degree to which male reproductive success depends on mating with virgin females. Juveniles of both species were reared either in the presence or absence of virgin female silk cues. We predicted strong selection on socially cued plasticity in N. fenestrata in which males follow a highly specialized terminal investment strategy, but expected a weaker plastic response in N. senegalensis in which males lost the ability to monopolize females. Results: Contrary to our predictions, N. fenestrata males presented with virgin female silk cues did not mature earlier than siblings reared isolated from such cues. Males in N. senegalensis, however, showed a significant response to female cues and matured several days earlier than control males. Plastic adjustment of maturation had no effect on male size. Conclusions: Our results indicate that a strong benefit of mating with virgins due to first male sperm priority does not necessarily promote socially cued anticipatory plasticity. We emphasize the bidirectional mode of developmental responses and suggest that this form of plasticity may not only yield benefits through accelerated maturation, but also by avoiding costs of precipitate maturation in the absence of female cues
    • …
    corecore