146 research outputs found

    The cytolethal distending toxin-IV cdt

    Full text link

    Húgyúti kórokozó Escherichia coli virulenciájára irányuló vizsgálatok = Investigations on the virulence of uropathogenic Escherichia coli

    Get PDF
    Az Escherichia coli fő húgyúti virulencia faktorainak vizsgálatával bizonyítottuk, hogy az alfa hemolizin a toxicitásért felelős legjelentősebb pathogenetikai tényező, emellet a tok és fimbriák a kolonizációban jászanak fontos szerepet. A haemolysin operont tartalmazó pathogenitási szigetet in vitro és egerek bélscatornájában in vivo is át tudtuk vinni a genus más képviselőjébe. Emellett a hemolizin operon kicserélhetőségét bizonyítottuk Escherichia és Proteus törzsek között szintén in vivo környezetben is. A hemolizáló rekombinánsok virulenciája a recipienshez képest szignfikánsan magasabb. Hibridizációs kísérletekkel az E. coli és Proteus penneri haemolizin operonjainak homológiáját bizonyítottuk. Gyakorlati jelentőségű megfigyelés, hogy a rezisztens hemolizáló törzs antibiotikum kezelés esetén a bélcsatornában elszaporodva életet veszélyeztető fertőzés forrása lehet. A hemolzin és fimbria operonok szabályozásában jelenős mechanizmusokat tártunk fel. | In mouse experiments we have proved that alpha-haemolysin with its toxic effect is the main urinary virulence factor of E. coli. Besides fimbrial adhesins and the capsule are important in the first colonisation step of the infection. The pathogenicity island containing the haemolysin operon could be transferred from the wild type strain to non-hemolytic E. coli strains in the mouse intestine. Furthermore, the haemolysin operon is exchangable in vivo between E. coli and Proteus strains. The haemolytic recombinants present with significantly increased virulence in various mouse models. With hybridisation experiments we could prove homology between the haemolysin operons of E. coli and Proteus penneri. The observation that antibiotic resistant haemlysin producing E. coli in the microbiota may elicit severe infection in the antibiotic treated patients may be of paractical significance. Regulatory machineries governing the expression of haemolysin and fimbria operons were also elucidated

    Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus

    Get PDF
    Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect

    Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs) - including pathogenicity islands (PAIs) - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial) islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT). Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far.</p> <p>Results</p> <p>To study mobilisation of such large genomic regions in prototypic uropathogenic <it>E. coli </it>(UPEC) strain 536, PAI II<sub>536 </sub>was supplemented with the <it>mob</it><sub>RP4 </sub>region, an origin of replication (<it>oriV</it><sub><it>R6K</it></sub>), an origin of transfer (<it>oriT</it><sub><it>RP4</it></sub>) and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II<sub>536 </sub>construct occured from strain 536 into an <it>E. coli </it>K-12 recipient. In transconjugants, PAI II<sub>536 </sub>existed either as a cytoplasmic circular intermediate (CI) or integrated site-specifically into the recipient's chromosome at the <it>leuX </it>tRNA gene. This locus is the chromosomal integration site of PAI II<sub>536 </sub>in UPEC strain 536. From the <it>E. coli </it>K-12 recipient, the chromosomal PAI II<sub>536 </sub>construct as well as the CIs could be successfully remobilised and inserted into <it>leuX </it>in a PAI II<sub>536 </sub>deletion mutant of <it>E. coli </it>536.</p> <p>Conclusions</p> <p>Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands.</p

    Photocatalytic Inactivation of Plant Pathogenic Bacteria Using TiO2 Nanoparticles Prepared Hydrothermally

    Get PDF
    Exploitation of engineered nanomaterials with unique properties has been dynamically growing in numerous fields, including the agricultural sector. Due to the increasing resistance of phytopathogenic microbes, human control over various plant pathogens in crop production is a big challenge and requires the development of novel antimicrobial materials. Photocatalytic active nanomaterials could offer an alternative solution to suppress the plant pathogens. In this work, titanium dioxide nanoparticles (TiO2 NPs) with high photocatalytic activity were synthesized by hydrothermal post-treatment of amorphous titania at different temperatures (250 °C or 310 °C) without using any additives or doping agents. The obtained samples were investigated through X-ray diffraction, N2-sorption measurements, diffuse reflectance UV-Vis spectroscopy, transmission electron microscopy, electron paramagnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. The applied hydrothermal treatment led to the formation of TiO2 nanocrystallites with a predominant anatase crystal phase, with increasing crystallinity and crystallite size by prolonging treatment time. The photocatalytic activity of the TiO2 NPs was tested for the photo-degradation of phenol and applied for the inactivation of various plant pathogens such as Erwinia amylovora, Xanthomonas arboricola pv. juglandis, Pseudomonas syringae pv. tomato and Allorhizobium vitis. The studied bacteria showed different susceptibilities; their living cell numbers were quickly and remarkably reduced by UV-A-irradiated TiO2 NPs. The effectiveness of the most active sample prepared at 310 °C was much higher than that of commercial P25 TiO2. We found that fine-tuning of the structural properties by modulating the time and temperature of the hydrothermal treatment influenced the photocatalytic properties of the TiO2 NPs considerably. This work provides valuable information to the development of TiO2-based antimicrobial photocatalysts

    Isolation and Characterisation of Electrogenic Bacteria from Mud Samples

    Get PDF
    To develop efficient microbial fuel cell systems for green energy production using different waste products, establishing characterised bacterial consortia is necessary. In this study, bacteria with electrogenic potentials were isolated from mud samples and examined to determine biofilm-formation capacities and macromolecule degradation. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identifications have revealed that isolates represented 18 known and 4 unknown genuses. They all had the capacities to reduce the Reactive Black 5 stain in the agar medium, and 48 of them were positive in the wolfram nanorod reduction assay. The isolates formed biofilm to different extents on the surfaces of both adhesive and non-adhesive 96-well polystyrene plates and glass. Scanning electron microscopy images revealed the different adhesion potentials of isolates to the surface of carbon tissue fibres. Eight of them (15%) were able to form massive amounts of biofilm in three days at 23 °C. A total of 70% of the isolates produced proteases, while lipase and amylase production was lower, at 38% and 27% respectively. All of the macromolecule-degrading enzymes were produced by 11 isolates, and two isolates of them had the capacity to form a strong biofilm on the carbon tissue one of the most used anodic materials in MFC systems. This study discusses the potential of the isolates for future MFC development applications

    Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands

    Full text link
    Background: A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs) - including pathogenicity islands (PAIs) - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial) islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT). Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far. Results: To study mobilisation of such large genomic regions in prototypic uropathogenic E. coli (UPEC) strain 536, PAI II536 was supplemented with the mobRP4 region, an origin of replication (oriVR6K), an origin of transfer (oriTRP4) and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II536 construct occured from strain 536 into an E. coli K-12 recipient. In transconjugants, PAI II536 existed either as a cytoplasmic circular intermediate (CI) or integrated site-specifically into the recipient’s chromosome at the leuX tRNA gene. This locus is the chromosomal integration site of PAI II536 in UPEC strain 536. From the E. coli K-12 recipient, the chromosomal PAI II536 construct as well as the CIs could be successfully remobilised and inserted into leuX in a PAI II536 deletion mutant of E. coli 536. Conclusions: Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands

    Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects

    Get PDF
    Many insect species rely on the polarization properties of object-reflected light for vital tasks like water or host detection. Unfortunately, typical glass-encapsulated photovoltaic modules, which are expected to cover increasingly large surfaces in the coming years, inadvertently attract various species of water-seeking aquatic insects by the horizontally polarized light they reflect. Such polarized light pollution can be extremely harmful to the entomofauna if polarotactic aquatic insects are trapped by this attractive light signal and perish before reproduction, or if they lay their eggs in unsuitable locations. Textured photovoltaic cover layers are usually engineered to maximize sunlight-harvesting, without taking into consideration their impact on polarized light pollution. The goal of the present study is therefore to experimentally and computationally assess the influence of the cover layer topography on polarized light pollution. By conducting field experiments with polarotactic horseflies (Diptera: Tabanidae) and a mayfly species (Ephemeroptera: Ephemera danica), we demonstrate that bioreplicated cover layers (here obtained by directly copying the surface microtexture of rose petals) were almost unattractive to these species, which is indicative of reduced polarized light pollution. Relative to a planar cover layer, we find that, for the examined aquatic species, the bioreplicated texture can greatly reduce the numbers of landings. This observation is further analyzed and explained by means of imaging polarimetry and ray-tracing simulations. The results pave the way to novel photovoltaic cover layers, the interface of which can be designed to improve sunlight conversion efficiency while minimizing their detrimental influence on the ecology and conservation of polarotactic aquatic insects
    corecore