120 research outputs found

    Blended learning for accredited life support courses - A systematic review.

    Get PDF
    Aim To evaluate the effectiveness on educational and resource outcomes of blended compared to non-blended learning approaches for participants undertaking accredited life support courses. Methods This review was conducted in adherence with PRISMA standards. We searched EMBASE.com (including all journals listed in Medline), CINAHL and Cochrane from 1 January 2000 to 6 August 2021. Randomised and non-randomised studies were eligible for inclusion. Study screening, data extraction, risk of bias assessment (using RoB2 and ROBINS-I tools), and certainty of evidence evaluation (using GRADE) were all independently performed in duplicate. The systematic review was registered with PROSPERO (CRD42022274392). Results From 2,420 studies, we included data from 23 studies covering fourteen basic life support (BLS) with 2,745 participants, eight advanced cardiac life support (ALS) with 33,579 participants, and one Advanced Trauma Life Support (ATLS) with 92 participants. Blended learning is at least as effective as non-blended learning for participant satisfaction, knowledge, skills, and attitudes. There is potential for cost reduction and eventual net profit in using blended learning despite high set up costs. The certainty of evidence was very low due to a high risk of bias and inconsistency. Heterogeneity across studies precluded any meta-analysis. Conclusion Blended learning is at least as effective as non-blended learning for accredited BLS, ALS, and ATLS courses. Blended learning is associated with significant long term cost savings and thus provides a more efficient method of teaching. Further research is needed to investigate specific delivery methods and the effect of blended learning on other accredited life support courses

    Infectious complications after deployment trauma: Following wounded US military personnel into Veterans Affairs care

    Get PDF
    BACKGROUND: Infectious complications related to deployment trauma significantly contribute to the morbidity and mortality of wounded service members. The Trauma Infectious Disease Outcomes Study (TIDOS) collects data on US military personnel injured in Iraq and Afghanistan in an observational cohort study of infectious complications. Patients enrolled in TIDOS may also consent to follow-up through the Department of Veterans Affairs (VA). We present data from the first 337 TIDOS enrollees to receive VA healthcare. METHODS: Data were collected from the Department of Defense (DoD) Trauma Registry, TIDOS infectious disease module, DoD and VA electronic medical records, and telephone interview. Cox proportional hazard analysis was performed to identify predictors of post-discharge infections related to deployment trauma. RESULTS: Among the first 337 TIDOS enrollees who entered VA healthcare, 111 (33%) had 244 trauma-related infections during their initial trauma hospitalization (2.1 infections per 100 person-days). Following initial discharge, 127 (38%) enrollees had 239 trauma-related infections (170 during DoD follow-up and 69 during VA time). Skin and soft-tissue infections and osteomyelitis were predominant during and after the initial trauma hospitalization. In a multivariate model, a shorter time to development of a new infection following discharge was independently associated with injury severity score ≥10 and occurrence of ≥1 inpatient infection during initial trauma hospitalization. CONCLUSIONS: Incident infections related to deployment trauma continue well after initial hospital discharge and into VA healthcare. Overall, 38% of enrolled patients developed a new trauma-related infection after their initial hospital discharge, with 29% occurring after the patient left military service

    Characterization of Turing diffusion-driven instability on evolving domains

    Get PDF
    In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linearising the original system along a spatially independent solution). This framework allows for the inclusion of the analysis of the long-time behavior of the solutions of reaction-diffusion systems. Applications to two special types of evolving domains are considered: (i) time-dependent domains which evolve to a final limiting fixed domain and (ii) time-dependent domains which are eventually time periodic. Reaction-diffusion systems have been widely proposed as plausible mechanisms for pattern formation in morphogenesis

    Long-Term Assessment of the Effects of COVID-19 and Isolation Care on Survivor Disability and Anxiety

    Get PDF
    We conducted an assessment of disability, anxiety, and other life impacts of COVID-19 and isolation care in a unique cohort of individuals. These included both community admissions to a university hospital as well as some of the earliest international aeromedical evacuees. Among an initial 16 COVID-19 survivors that were interviewed 6-12 months following their admission into isolation care, perception of their isolation care experience was related to their reporting of long-term consequences. However, anxiety and disability assessed with standard scores had no relationship with each other. Both capture of the isolation care experience and caution relying on single scoring systems for assessing long-term consequences in survivors are important considerations for on-going and future COVID-19 and other pandemic survivor research

    Aerosol and Surface Contamination of SARS-CoV-2 Observed in Quarantine and Isolation Care

    Get PDF
    The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in late 2019, and its resulting coronavirus disease, COVID-19, was declared a pandemic by the World Health Organization on March 11, 2020. The rapid global spread of COVID-19 represents perhaps the most significant public health emergency in a century. As the pandemic progressed, a continued paucity of evidence on routes of SARS-CoV-2 transmission has resulted in shifting infection prevention and control guidelines between classically-defined airborne and droplet precautions. During the initial isolation of 13 individuals with COVID-19 at the University of Nebraska Medical Center, we collected air and surface samples to examine viral shedding from isolated individuals. We detected viral contamination among all samples, supporting the use of airborne isolation precautions when caring for COVID-19 patients

    Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein

    Get PDF
    The new coronavirus, SARS-CoV-2, transmits rapidly from human-to-human resulting in the ongoing pandemic. SARS-CoV-2 infects angiotensin-converting enzyme 2 (ACE-2) expressing lung, heart, kidney, intestine, gall bladder, and testicular tissues of patients, leading to organ failure and sometimes death.1, 2 Currently, COVID-19 patients are treated with different agents, including favilavir, remdesivir, chloroquine, hydroxychloroquine, lopinavir, darunavir, and tocilizumab.3, 4 However, the safety and efficacy of those drugs against COVID-19 still need further confirmation by randomized clinical trials. Hence, there is an emergent need to repurpose the existing drugs or develop new virus-based and host-based antivirals against SARS-CoV-2. Bromelain is a cysteine protease isolated from pineapple stem and is used as a dietary supplement for treating patients with pain, inflammation,5 thrombosis,6 and cancerPeer Reviewe

    Assessment of a Program for SARS-CoV-2 Screening and Environmental Monitoring in an Urban Public School District

    Get PDF
    Importance: Scalable programs for school-based SARS-CoV-2 testing and surveillance are needed to guide in-person learning practices and inform risk assessments in kindergarten through 12th grade settings. Objectives: To characterize SARS-CoV-2 infections in staff and students in an urban public school setting and evaluate test-based strategies to support ongoing risk assessment and mitigation for kindergarten through 12th grade in-person learning. Design, Setting, and Participants: This pilot quality improvement program engaged 3 schools in Omaha, Nebraska, for weekly saliva polymerase chain reaction testing of staff and students participating in in-person learning over a 5-week period from November 9 to December 11, 2020. Wastewater, air, and surface samples were collected weekly and tested for SARS-CoV-2 RNA to evaluate surrogacy for case detection and interrogate transmission risk of in-building activities. Main Outcomes and Measures: SARS-CoV-2 detection in saliva and environmental samples and risk factors for SARS-CoV-2 infection. Results: A total of 2885 supervised, self-collected saliva samples were tested from 458 asymptomatic staff members (mean [SD] age, 42.9 [12.4] years; 303 women [66.2%]; 25 Black or African American [5.5%], 83 Hispanic [18.1%], 312 White [68.1%], and 35 other or not provided [7.6%]) and 315 students (mean age, 14.2 [0.7] years; 151 female students [48%]; 20 Black or African American [6.3%], 201 Hispanic [63.8%], 75 White [23.8%], and 19 other race or not provided [6.0%]). A total of 46 cases of SARS-CoV-2 (22 students and 24 staff members) were detected, representing an increase in cumulative case detection rates from 1.2% (12 of 1000) to 7.0% (70 of 1000) among students and from 2.1% (21 of 1000) to 5.3% (53 of 1000) among staff compared with conventional reporting mechanisms during the pilot period. SARS-CoV-2 RNA was detected in wastewater samples from all pilot schools as well as in air samples collected from 2 choir rooms. Sequencing of 21 viral genomes in saliva specimens demonstrated minimal clustering associated with 1 school. Geographical analysis of SARS-CoV-2 cases reported district-wide demonstrated higher community risk in zip codes proximal to the pilot schools. Conclusions and Relevance: In this study of staff and students in 3 urban public schools in Omaha, Nebraska, weekly screening of asymptomatic staff and students by saliva polymerase chain reaction testing was associated with increased SARS-CoV-2 case detection, exceeding infection rates reported at the county level. Experiences differed among schools, and virus sequencing and geographical analyses suggested a dynamic interplay of school-based and community-derived transmission risk. Collectively, these findings provide insight into the performance and community value of test-based SARS-CoV-2 screening and surveillance strategies in the kindergarten through 12th grade educational setting

    Advanced Preparation Makes Research in Emergencies and Isolation Care Possible: The Case of Novel Coronavirus Disease (COVID-19)

    Get PDF
    The optimal time to initiate research on emergencies is before they occur. However, timely initiation of high-quality research may launch during an emergency under the right conditions. These include an appropriate context, clarity in scientific aims, preexisting resources, strong operational and research structures that are facile, and good governance. Here, Nebraskan rapid research efforts early during the 2020 coronavirus disease pandemic, while participating in the first use of U.S. federal quarantine in 50 years, are described from these aspects, as the global experience with this severe emerging infection grew apace. The experience has lessons in purpose, structure, function, and performance of research in any emergency, when facing any threat
    corecore