138 research outputs found

    Ancient Horizontal Gene Transfer from Bacteria Enhances Biosynthetic Capabilities of Fungi

    Get PDF
    Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive.We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA)-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication.Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase

    Genetic Basis of Self-Incompatibility in the Lichen-Forming Fungus Lobaria pulmonaria and Skewed Frequency Distribution of Mating-Type Idiomorphs: Implications for Conservation

    Get PDF
    Fungal populations that reproduce sexually are likely to be genetically more diverse and have a higher adaptive potential than asexually reproducing populations. Mating systems of fungal species can be self-incompatible, requiring the presence of isolates of different mating-type genes for sexual reproduction to occur, or self-compatible, requiring only one. Understanding the distribution of mating-type genes in populations can help to assess the potential of self-incompatible species to reproduce sexually. In the locally threatened epiphytic lichen-forming fungus Lobaria pulmonaria (L.) Hoffm., low frequency of sexual reproduction is likely to limit the potential of populations to adapt to changing environmental conditions. Our study provides direct evidence of self-incompatibility (heterothallism) in L. pulmonaria. It can thus be hypothesized that sexual reproduction in small populations might be limited by an unbalanced distribution of mating-type genes. We therefore assessed neutral genetic diversity (using microsatellites) and mating-type ratio in 27 lichen populations (933 individuals). We found significant differences in the frequency of the two mating types in 13 populations, indicating a lower likelihood of sexual reproduction in these populations. This suggests that conservation translocation activities aiming at maximizing genetic heterogeneity in threatened and declining populations should take into account not only presence of fruiting bodies in transplanted individuals, but also the identity and balanced representation of mating-type genes

    Gene abundance linked to climate zone: Parallel evolution of gene content along elevation gradients in lichenized fungi

    Get PDF
    IntroductionIntraspecific genomic variability affects a species' adaptive potential toward climatic conditions. Variation in gene content across populations and environments may point at genomic adaptations to specific environments. The lichen symbiosis, a stable association of fungal and photobiont partners, offers an excellent system to study environmentally driven gene content variation. Many of these species have remarkable environmental tolerances, and often form populations across different climate zones. Here, we combine comparative and population genomics to assess the presence and absence of genes in high and low elevation genomes of two lichenized fungi of the genus Umbilicaria. MethodsThe two species have non-overlapping ranges, but occupy similar climatic niches in North America (U. phaea) and Europe (U. pustulata): high elevation populations are located in the cold temperate zone and low elevation populations in the Mediterranean zone. We assessed gene content variation along replicated elevation gradients in each of the two species, based on a total of 2050 individuals across 26 populations. Specifically, we assessed shared orthologs across species within the same climate zone, and tracked, which genes increase or decrease in abundance within populations along elevation. ResultsIn total, we found 16 orthogroups with shared orthologous genes in genomes at low elevation and 13 at high elevation. Coverage analysis revealed one ortholog that is exclusive to genomes at low elevation. Conserved domain search revealed domains common to the protein kinase superfamily. We traced the discovered ortholog in populations along five replicated elevation gradients on both continents and found that the number of this protein kinase gene linearly declined in abundance with increasing elevation, and was absent in the highest populations. DiscussionWe consider the parallel loss of an ortholog in two species and in two geographic settings a rare find, and a step forward in understanding the genomic underpinnings of climatic tolerances in lichenized fungi. In addition, the tracking of gene content variation provides a widely applicable framework for retrieving biogeographical determinants of gene presence/absence patterns. Our work provides insights into gene content variation of lichenized fungi in relation to climatic gradients, suggesting a new research direction with implications for understanding evolutionary trajectories of complex symbioses in relation to climatic change

    Antimicrobial-producing Pseudoalteromonas from the marine environment of Panama shows a high phylogenetic diversity and clonal structure

    Get PDF
    Pseudoalteromonas is a genus of marine bacteria often found in association with other organisms. Although several studies have examined Pseudoalteromonas diversity and their antimicrobial activity, its diversity in tropical environments is largely unexplored. We investigated the diversity of Pseudoalteromonasin marine environments of Panama using a multilocus phylogenetic approach. Furthermore we tested their antimicrobial capacity and evaluated the effect of recombination and mutation in shaping their phylogenetic relationships. The reconstruction of clonal relationships among 78 strains including 15 reference Pseudoalteromonas species revealed 43 clonal lineages, divided in pigmented and non-pigmented strains. In total, 39 strains displayed moderate to high activity against Gram-positive and Gram-negative bacteria and fungi. Linkage disequilibrium analyses showed that the Pseudoalteromonas strains of Panama have a highly clonal structure and that, although present, recombination is not frequent enough to break the association among alleles. This clonal structure is in contrast to the high rates of recombination generally reported for aquatic and marine bacteria.We propose that this structure is likely due to the symbiotic association with marine invertebrates of most strains analyzed. Our results also show that there are several putative new species of Pseudoalteromonas in Panama to be described.Pseudoalteromonas is a genus of marine bacteria often found in association with other organisms. Although several studies have examined Pseudoalteromonas diversity and their antimicrobial activity, its diversity in tropical environments is largely unexplored. We investigated the diversity of Pseudoalteromonasin marine environments of Panama using a multilocus phylogenetic approach. Furthermore we tested their antimicrobial capacity and evaluated the effect of recombination and mutation in shaping their phylogenetic relationships. The reconstruction of clonal relationships among 78 strains including 15 reference Pseudoalteromonas species revealed 43 clonal lineages, divided in pigmented and non-pigmented strains. In total, 39 strains displayed moderate to high activity against Gram-positive and Gram-negative bacteria and fungi. Linkage disequilibrium analyses showed that the Pseudoalteromonas strains of Panama have a highly clonal structure and that, although present, recombination is not frequent enough to break the association among alleles. This clonal structure is in contrast to the high rates of recombination generally reported for aquatic and marine bacteria.We propose that this structure is likely due to the symbiotic association with marine invertebrates of most strains analyzed. Our results also show that there are several putative new species of Pseudoalteromonas in Panama to be described

    Evolutionary genomics can improve prediction of species' responses to climate change

    Get PDF
    Global climate change (GCC) increasingly threatens biodiversity through the loss of species, and the transformation of entire ecosystems. Many species are challenged by the pace of GCC because they might not be able to respond fast enough to changing biotic and abiotic conditions. Species can respond either by shifting their range, or by persisting in their local habitat. If populations persist, they can tolerate climatic changes through phenotypic plasticity, or genetically adapt to changing conditions depending on their genetic variability and census population size to allow for de novo mutations. Otherwise, populations will experience demographic collapses and species may go extinct. Current approaches to predicting species responses to GCC begin to combine ecological and evolutionary information for species distribution modelling. Including an evolutionary dimension will substantially improve species distribution projections which have not accounted for key processes such as dispersal, adaptive genetic change, demography, or species interactions. However, eco-evolutionary models require new data and methods for the estimation of a species' adaptive potential, which have so far only been available for a small number of model species. To represent global biodiversity, we need to devise large-scale data collection strategies to define the ecology and evolutionary potential of a broad range of species, especially of keystone species of ecosystems. We also need standardized and replicable modelling approaches that integrate these new data to account for eco-evolutionary processes when predicting the impact of GCC on species' survival. Here, we discuss different genomic approaches that can be used to investigate and predict species responses to GCC. This can serve as guidance for researchers looking for the appropriate experimental setup for their particular system. We furthermore highlight future directions for moving forward in the field and allocating available resources more effectively, to implement mitigation measures before species go extinct and ecosystems lose important functions

    Whole-genome sequence data uncover widespread heterothallism in the largest group of lichen-forming fungi

    Get PDF
    Fungal reproduction is regulated by the mating-type (MAT1) locus, which typically comprises two idiomorphic genes. The presence of one or both allelic variants at the locus determines the reproductive strategy in Fungi – homothallism vs. heterothallism. It has been hypothesized that self-fertility via homothallism is widespread in lichen-forming fungi. To test this hypothesis, we characterized the MAT1 locus of 41 genomes of lichen-forming fungi representing a wide range of growth forms and reproductive strategies in the class Lecanoromycetes, the largest group of lichen-forming fungi. Our results show the complete lack of genetic homothallism suggesting that lichens evolved from a heterothallic ancestor. We argue that this may be related to the symbiotic lifestyle of these fungi, and may be a key innovation that has contributed to the accelerated diversification rates in this fungal group

    Neoprotoparmelia gen. nov. and Maronina (Lecanorales, Protoparmelioideae): species description and generic delimitation using DNA barcodes and phenotypical characters

    Get PDF
    Multilocus phylogenetic studies revealed a high level of cryptic diversity within the lichen-forming fungal genus Maronina (Protoparmelioideae, Parmeliaceae). Coalescent-based species delimitation suggested that most of the cryptic molecular lineages warranted recognition as separate species. Here we study the morphology and chemistry of these taxa and formally describe eight new species based on phenotypical and molecular characters. Further, we evaluate the use of ITS rDNA as a DNA barcode for identifying species in this genus. For the first time, we obtained an ITS sequence of Maronina australiensis, the type species of the genus and showed that it is phylogenetically not closely related to species currently placed in Maronina or Protoparmelia. We assembled a dataset of 66 ITS sequences to assess the interspecies genetic distances amongst the twelve Maronina species using ITS as DNA barcode. We found that Maronina and Protoparmelia form a supported monophyletic group whereas M. australiensis is sister to both. We therefore propose a new genus Neoprotoparmelia to accommodate the tropical-subtropical species within Protoparmelioideae, with Neoprotoparmelia corallifera as the type, N. amerisidiata, N. australisidiata, N. brasilisidiata, N. capensis, N. crassa, N. pauli, N. plurisporibadia and N. siamisidiata as new species and N. capitata, N. isidiata, N. multifera, N. orientalis and N. pulchra as new proposed combinations. We provide a key to Neoprotoparmelia and confirm the use of ITS for accurately identifying species in this group

    Social Democratic Party Exceptionalism and Transnational Policy Linkages

    Get PDF
    Political parties learn from foreign incumbents, i.e., parties abroad that won office. But does the scope of this cross-national policy diffusion vary with the party family that generates incumbents? We argue that party family conditions transnational policy learning when it makes information on the positions of sister parties more readily available and relevant. Both conditions apply to Social Democratic parties. Unlike other party families, Social Democrats faced major competitive challenges from the 1970s and they exhibit exceptionally strong transnational organizations – factors that, as we contend, uniquely facilitate cross-national policy learning from successful parties within the family. We analyze parties’ policy positions using spatial methods and find that Social Democratic parties are indeed exceptional as they emulate one another across borders more than Christian Democrats and Conservatives. These findings have important implications for our understanding of political representation and of Social Democratic parties’ election strategies over the last forty years

    Effects of GnRH vaccination in wild and captive African Elephant bulls (Loxodonta africana) on reproductive organs and semen quality

    Get PDF
    OBJECTIVES: Although the African elephant (Loxodonta africana) is classified as endangered by the International Union for Conservation of Nature (IUCN), in some isolated habitats in southern Africa, contraception is of major interest due to local overpopulation. GnRH vaccination has been promoted as a non-invasive contraceptive measure for population management of overabundant wildlife. We tested the efficacy of this treatment for fertility control in elephant bulls. METHODS: In total, 17 male African elephants that were treated with a GnRH vaccine were examined in two groups. In the prospective study group 1 (n = 11 bulls, ages: 8±36 years), semen quality, the testes, seminal vesicles, ampullae and prostate, which were all measured by means of transrectal ultrasound, and faecal androgen metabolite concentrations were monitored over a three-year period. Each bull in the prospective study received 5 ml of Improvac® (1000 μg GnRH conjugate) intramuscularly after the first examination, followed by a booster six weeks later and thereafter every 5±7 months. In a retrospective study group (group 2, n = 6, ages: 19±33 years), one examination was performed on bulls which had been treated with GnRH vaccine for 5±11 years. RESULTS: In all bulls of group 1, testicular and accessory sex gland sizes decreased significantly after the third vaccination. In six males examined prior to vaccination and again after more than five vaccinations, the testis size was reduced by 57.5%. Mean testicular height and length decreased from 13.3 ± 2.6 cm x 15.2 ± 2.8 cm at the beginning to 7.6 ± 2.1 cm x 10.2 ± 1.8 cm at the end of the study. Post pubertal bulls (>9 years, n = 6) examined prior to vaccination produced ejaculates with viable spermatozoa (volume: 8±175 ml, sperm concentration: 410-4000x106/ml, total motility: 0±90%), while after 5±8 injections, only 50% of these bulls produced ejaculates with a small number of immotile spermatozoa. The ejaculates of group 2 bulls (vaccinated >8 times) were devoid of spermatozoa. Faecal androgen metabolite concentrations measured in captive males decreased significantly after the fourth vaccination. None of the males entered musth during the treatment period. CONCLUSIONS: Our results showed a marked decrease in semen quality, testicle and secondary sex gland sizes following repeated GnRH vaccinations. After 2±4 years of continuous treatment every 5±7 months, the effects were similar to surgical castration.ISIScopu
    corecore