2,007 research outputs found

    Scaling relationship between the wavelength of longitudinal ridges and the thickness of long runout landslides on the moon

    Get PDF
    The formation mechanism of longitudinal ridges in long runout landslides has been proposed to require ice and/or clay minerals, as low friction materials would allow the spreading of the deposit, causing the development of longitudinal ridges by tensile deformation of the slide. The necessity of ice in the formation of longitudinal ridges has been challenged by the finding that the wavelength of longitudinal ridges is 2 to 3 times the thickness of the deposit in both ice-free laboratory experiments on rapid granular flows and in a martian and terrestrial long runout landslide, suggesting a scale- and environment-independent mechanism. We conduct morphometric analysis of the longitudinal ridges in two landslides on the Moon, considered ice-free throughout its geological history: the Tsiolkovskiy crater landslide; and the Light Mantle avalanche in Taurus-Littrow Valley. We show that Tsiolkovskiy crater landslide exhibits a scaling relationship between the wavelength of its longitudinal ridges and the thickness of its deposit that is consistent with previous studies, supporting the idea that ice is not a necessary condition for the development of longitudinal ridges. As the Tsiolkovskiy crater landslide is laterally confined, it demonstrates that neither the development of longitudinal ridges nor the occurrence of the scaling relationship between the wavelength of the ridges and the thickness of the deposit depend on the lateral spreading of the deposit. Finally, we use the Light Mantle to test the use of the scaling relationship as a tool to estimate the thickness of the deposit when classical geomorphological methods are not applicable

    Longitudinal ridges imparted by high-speed granular flow mechanisms in martian landslides

    Get PDF
    The presence of longitudinal ridges documented in long runout landslides across our solar system is commonly associated with the existence of a basal layer of ice. However, their development, the link between their occurrence and the emplacement mechanisms of long runout landslides, and the necessity of a basal ice layer remain poorly understood. Here, we analyse the morphometry of longitudinal ridges of a martian landslide and show that the wavelength of the ridges is 2–3 times the average thickness of the landslide deposit, a unique scaling relationship previously reported in ice-free rapid granular flow experiments. We recognize en-echelon features that we interpret as kinematic indicators, congruent with experimentally-measured transverse velocity gradient. We suggest that longitudinal ridges should not be considered as unequivocal evidence for presence of ice, rather as inevitable features of rapid granular sliding material, that originate from a mechanical instability once a kinematic threshold is surpassed

    Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis

    Get PDF
    In developing countries, deficiencies of micronutrients are thought to have a major impact on child development; however, a consensus on the specific relationship between dietary zinc intake and cognitive function remains elusive. The aim of this systematic review was to examine the relationship between zinc intake, status and indices of cognitive function in children and adults. A systematic literature search was conducted using EMBASE, MEDLINE and Cochrane Library databases from inception to March 2014. Included studies were those that supplied zinc as supplements or measured dietary zinc intake. A meta-analysis of the extracted data was performed where sufficient data were available. Of all of the potentially relevant papers, 18 studies met the inclusion criteria, 12 of which were randomised controlled trials (RCTs; 11 in children and 1 in adults) and 6 were observational studies (2 in children and 4 in adults). Nine of the 18 studies reported a positive association between zinc intake or status with one or more measure of cognitive function. Meta-analysis of data from the adult’s studies was not possible because of limited number of studies. A meta-analysis of data from the six RCTs conducted in children revealed that there was no significant overall effect of zinc intake on any indices of cognitive function: intelligence, standard mean difference of <0.001 (95% confidence interval (CI) –0.12, 0.13) P=0.95; executive function, standard mean difference of 0.08 (95% CI, –0.06, 022) P=0.26; and motor skills standard mean difference of 0.11 (95% CI –0.17, 0.39) P=0.43. Heterogeneity in the study designs was a major limitation, hence only a small number (n=6) of studies could be included in the meta-analyses. Meta-analysis failed to show a significant effect of zinc supplementation on cognitive functioning in children though, taken as a whole, there were some small indicators of improvement on aspects of executive function and motor development following supplementation but high-quality RCTs are necessary to investigate this further

    CD4 T lymphocyte autophagy is upregulated in the salivary glands of primary Sjögren’s syndrome patients and correlates with focus score and disease activity

    Get PDF
    Background: Primary Sjögren’s syndrome (pSS) is a common chronic autoimmune disease characterized by lymphocytic infiltration of exocrine glands and peripheral lymphocyte perturbation. In the current study, we aimed to investigate the possible pathogenic implication of autophagy in T lymphocytes in patients with pSS. Methods: Thirty consecutive pSS patients were recruited together with 20 patients affected by sicca syndrome a nd/or chronic sialoadenitis and 30 healthy controls. Disease activity and damage were evaluated according to SS disease activity index, EULAR SS disease activity index, and SS disease damage index. T lymphocytes were analyzed for the expression of autophagy-specific markers by biochemical, molecular, and histological assays in peripheral blood and labial gland biopsies. Serum interleukin (IL)-23 and IL-21 levels were quantified by enzyme-linked immunosorbent assay. Results: Our study provides evidence for the first time that autophagy is upregulated in CD4+ T lymphocyte salivary glands from pSS patients. Furthermore, a statistically significant correlation was detected between lymphocyte autophagy levels, disease activity, and damage indexes. We also found a positive correlation between autophagy enhancement and the increased salivary gland expression of IL-21 and IL-23, providing a further link between innate and adaptive immune responses in pSS. Conclusions: These findings suggest that CD4+ T lymphocyte autophagy could play a key role in pSS pathogenesis. Additionally, our data highlight the potential exploitation of T cell autophagy as a biomarker of disease activity and provide new ground to verify the therapeutic implications of autophagy as an innovative drug target in pSS

    Post-supereruption recovery at Toba Caldera

    Get PDF
    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ~74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14 C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ~2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Identity Determinants of the Translocation Signal for a Type 1 Secretion System

    Get PDF
    The toxin hemolysin A was first identified in uropathogenic E. coli strains and shown to be secreted in a one-step mechanism by a dedicated secretion machinery. This machinery, which belongs to the Type I secretion system family of the Gram-negative bacteria, is composed of the outer membrane protein TolC, the membrane fusion protein HlyD and the ABC transporter HlyB. The N-terminal domain of HlyA represents the toxin which is followed by a RTX (Repeats in Toxins) domain harboring nonapeptide repeat sequences and the secretion signal at the extreme C-terminus. This secretion signal, which is necessary and sufficient for secretion, does not appear to require a defined sequence, and the nature of the encoded signal remains unknown. Here, we have combined structure prediction based on the AlphaFold algorithm together with functional and in silico data to examine the role of secondary structure in secretion. Based on the presented data, a C-terminal, amphipathic helix is proposed between residues 975 and 987 that plays an essential role in the early steps of the secretion process.</jats:p

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    Get PDF
    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations
    • …
    corecore