19 research outputs found

    Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea — A Metagenomic Approach

    Get PDF
    Covering a quarter of the world’s tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea gray mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from gray mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%–85%), while Basidiomycota was less abundant (14%–24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the gray mangroves of the Red Sea, and show that they are significantly richer than previously reported

    Global Properties of Solar Flares

    Full text link

    Floristic composition and community structure of epiphytic angiosperms in a terra firme forest in central Amazonia

    Get PDF
    This survey aimed to describe the floristic composition and structure of the epiphytic community occurring in a terra firme forest in the city of Coari, Brazil, in the Amazon region. Data collection was performed with a 1.5 ha plot method, with which upland, slope and lowland habitats were sampled. All angiosperm epiphytes and their host plants (diameter at breast height > 10 cm) were sampled. We recorded 3.528 individuals in 13 families, 48 genera and 164 species. Araceae was the most prevalent family with regard to the importance value and stood out in all related parameters, followed by Bromeliaceae, Cyclanthaceae and Orchidaceae. The species with the highest epiphytic importance values were Guzmania lingulata (L.) Mez. and Philodendron linnaei Kunth. The predominant life form was hemiepiphytic. Estimated floristic diversity was 3.2 (H'). The studied epiphytic community was distributed among 727 host plants belonging to 40 families, 123 genera and 324 species. One individual of Guarea convergens T.D. Penn. was the host with the highest richness and abundance of epiphytes. Stems/trunks of host plants were the most colonized segments, and the most favorable habitat for epiphytism was the lowlands, where 84.1% of species and 48.2% of epiphytic specimens were observed

    Plant TPX2 and related proteins

    No full text
    At the onset of mitosis, microtubules form a bipolar spindle around the prophase nucleus. TPX2 is phosphorylated during mitosis and acts as a spindle assembly factor that nucleates microtubules in the close vicinity of chromosomes, independent of the centrosomes. Furthermore, it activates the kinase Aurora A and targets the Xenopus kinesin-like protein 2 to spindle poles. We have characterized the plant orthologue of TPX2 that possesses all identified functional domains of its animal counterpart. Moreover, we have demonstrated that it is exported before nuclear envelope breakdown and that its activity around the nuclear envelope is essential for prospindle assembly. Here, we compare the sequences of several characterized TPX2 domains, allowing us to define TPX2. We propose that true TPX2 orthologues share simultaneously all these conserved domains and that other proteins possessing only some of these functional blocks may be considered as TPX2-related protein

    Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture

    No full text
    Centromeres play a pivotal role in maintaining genome integrity by facilitating the recruitment of kinetochore and sister-chromatid cohesion proteins, both required for correct chromosome segregation. Centromeres are epigenetically specified by the presence of the histone H3 variant (CENH3). In this study, we investigate the role of the highly conserved gamma-tubulin complex protein 3-interacting proteins (GIPs) in Arabidopsis centromere regulation. We show that GIPs form a complex with CENH3 in cycling cells. GIP depletion in the gip1gip2 knockdown mutant leads to a decreased CENH3 level at centromeres, despite a higher level of Mis18BP1/KNL2 present at both centromeric and ectopic sites. We thus postulate that GIPs are required to ensure CENH3 deposition and/or maintenance at centromeres. In addition, the recruitment at the centromere of other proteins such as the CENP-C kinetochore component and the cohesin subunit SMC3 is impaired in gip1gip2. These defects in centromere architecture result in aneuploidy due to severely altered centromeric cohesion. Altogether, we ascribe a central function to GIPs for the proper recruitment and/or stabilization of centromeric proteins essential in the specification of the centromere identity, as well as for centromeric cohesion in somatic cells
    corecore