2,794 research outputs found

    Measurement of beam losses at the australian synchrotron

    Get PDF
    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical f ber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216 m ring that stores electrons up to 3 GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam losses in a damping ring-like environment is presented here. A wide range of beam loss rates can be achieved by modifying three beam parameters strongly correlated to the beam lifetime: bunch charge (with a variation range between 1 uA and 10 mA), horizontal/vertical coupling and of dynamic aperture. The controlled beam losses are observed by means of the Cherenkov light produced in a 365 μ m core Silica f ber. The output light is coupled to different type of photo sensors namely: Metal Semiconductor Metal (MSM), Multi Pixel Photon Counters (MPPCs), standard PhotoMulTiplier (PMT) tubes, Avalanche Photo- Diodes (APD) and PIN diodes. A detailed comparison of the sensitivities and time resolution obtained with the different read-outs are discussed in this contribution

    The MROI fringe tracker: Laboratory tracking with ICONN

    Get PDF
    The loop is closed on ICONN, the Magdalena Ridge Observatory Interferometer fringe tracker. Results from laboratory experiments demonstrating ICONN's ability to track realistic, atmospheric-like path difference perturbations in real-time are shown. Characterizing and understanding the behavior and limits of ICONN in a controlled environment are key for reaching the goals of the MROI. The limiting factors in the experiments were found to be the light delivery system and temporary path length correction mechanism; not the on-sky components of ICONN. ICONN was capable of tracking fringes with a coherence loss below 5%; this will only improve in its final deployment.The Magdalena Ridge Observatory Interferometer is funded by the US Department of Transportation, the State of New Mexico, and New Mexico Tech with previous funding from the Navy Research Laboratory (NRL, agreement no. N00173-01-2-C902).This is the final version of the article, also available from SPIE at http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1891933. Copyright 2014 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. http://dx.doi.org/10.1117/12.205560

    The Familial Clustering of Age at Menarche in Extended Twin Families

    Get PDF
    The timing of puberty is complex, possibly involving many genetic factors that may interact with environmental influences. Familial resemblance for age at menarche was studied in a sample of 4,995 female twins, 1,296 sisters, 2,946 mothers and 635 female spouses of male twins. They had indicated their age at menarche as part of a larger longitudinal survey. We assessed assortative mating for age at menarche, gene–environment interaction effects and estimated the heritability of individual differences in pubertal timing. There was significant evidence of gene–environment interaction, accounting for 1.5% of the variance. There was no indication of consistent mate assortment on age at menarche. Individual differences in age at menarche are highly heritable, with additive genetic factors explaining at least 70% of the true variation. An additional 1.5% of the variation can be explained by a genotype–environment interaction effect where environmental factors are more important in individuals genetically predisposed for late menarche

    Microtubule dynamics in cell division : exploring living cells with polarized light microscopy

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Cell and Developmental Biology 24 (2008): 1-28, doi:10.1146/annurev.cellbio.24.110707.175323.This Perspective is an account of my early experience while I studied the dynamic organization and behavior of the mitotic spindle and its submicroscopic filaments using polarized light microscopy. The birefringence of spindle filaments in normally dividing plant and animal cells, and those treated by various agents, revealed: A) the reality of spindle fibers and fibrils in healthy living cells; B) the labile, dynamic nature of the molecular filaments making up the spindle fibers; C) the mode of fibrogenesis and action of orienting centers; and D) force-generating properties based on the disassembly and assembly of the fibrils. These studies, which were carried out directly on living cells using improved polarizing microscopes, in fact, predicted the reversible assembly properties of isolated microtubules

    Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    Get PDF
    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals

    Manganese as a Probe of Fungal Degradation of Wood

    Full text link
    Transition state metals, such as manganese (Mn) and iron (Fe), have been reported to be involved in fungal degradation of wood (Ellis, 1959; Shortl

    Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies

    Get PDF
    <p>Background - Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.</p> <p>Methods - We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.</p> <p>Findings - We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort.</p> <p>Interpretation - Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.</p&gt
    corecore