21,174 research outputs found

    Lateral transport of thermal capillary waves

    Full text link
    We demonstrate that collective motion of interfacial fluctuations can occur at the interface between two coexisting thermodynamic phases. Based on computer simulation results for driven diffusive Ising and Blume-Capel models, we conjecture that the thermal capillary waves at a planar interface travel along the interface if the lateral order parameter current j_op(y) is an odd function of the distance y from the interface and hence possesses opposite directions in the two phases. Such motion does not occur if j_op(y) is an even function of y. A discrete Gaussian interface model with effective dynamics exhibits similiar transport phenomena but with a simpler dispersion relation. These findings open up avenues for controlled interfacial transport on the nanoscale.Comment: 4 pages, 6 figure

    Role of thoracoscopic spinal surgery in the management of pyogenic vertebral osteomyelitis

    Get PDF
    Journal ArticleStudy Design. Case report, operative technique. Objectives. Vertebral osteomyelitis is frequently associated with elderly and debilitated patients who have significant medical comorbidities. If surgical debridement is contemplated, an open anterior approach like a thoracotomy can be associated with significant complications in this patient population. Thus, patients with vertebral osteomyelitis who need surgery may benefit from minimal invasive techniques that avoid the complications of more extensive open approaches. We performed thoracoscopic spinal surgery in patients with pyogenic vertebral osteomyelitis, attempting to reduce the morbidity attributable to standard open thoracotomy surgery

    Development of load spectra for Airbus A330/A340 full scale fatigue tests

    Get PDF
    For substantiation of the recently certified medium range Airbus A330 and long range A340 the full scale fatigue tests are in progress. The airframe structures of both aircraft types are tested by one set of A340 specimens. The development of the fatigue test spectra for the two major test specimens which are the center fuselage and wing test and the rear fuselage test is described. The applied test load spectra allow a realistic simulation of flight, ground and pressurization loads and the finalization of the tests within the pre-defined test period. The paper contains details about the 1 g and incremental flight and ground loads and the establishment of the flight-by-flight test program, i.e., the definition of flight types, distribution of loads within the flights and randomization of flight types in repeated blocks. Special attention is given to procedures applied for acceleration of the tests, e.g. omission of lower spectrum loads and a general increase of all loads by ten percent

    Interfaces in driven Ising models: shear enhances confinement

    Full text link
    We use a phase-separated driven two-dimensional Ising lattice gas to study fluid interfaces exposed to shear flow parallel to the interface. The interface is stabilized by two parallel walls with opposing surface fields and a driving field parallel to the walls is applied which (i) either acts locally at the walls or (ii) varies linearly with distance across the strip. Using computer simulations with Kawasaki dynamics, we find that the system reaches a steady state in which the magnetisation profile is the same as that in equilibrium, but with a rescaled length implying a reduction of the interfacial width. An analogous effect was recently observed in sheared phase-separated colloidal dispersions. Pair correlation functions along the interface decay more rapidly with distance under drive than in equilibrium and for cases of weak drive can be rescaled to the equilibrium result.Comment: 4 pages, 3 figures Text modified, added Fig. 3b. To appear in Phys. Rev. Letter

    UTLS temperature validation of MPI-ESM decadal hindcast experiments with GPS radio occultations

    Get PDF
    Global Positioning System (GPS) radio occultation (RO) temperature data are used to validate MPI-ESM (Max Planck Institute – Earth System Model) decadal hindcast experiments in the upper troposphere and lower stratosphere (UTLS) region between 300 hPa and 10 hPa (8 km and 32 km) for the time period between 2002 and 2011. The GPSRO dataset is unique since it is very precise, calibration independent and covers the globe better than the usual radiosonde dataset. In addition it is vertically finer resolved than any of the existing satellite temperature measurements available for the UTLS and provides now a unique one decade long temperature validation dataset. The initialization of the MPI-ESM decadal hindcast runs mostly increases the skill of the atmospheric temperatures when compared to uninitialized climate projections with very high skill scores for lead-year one, and gradually decreases for the later lead-years. A comparison between two different initialization sets (b0, b1) of the low-resolution (LR) MPI-ESM shows increased skills in b1-LR in most parts of the UTLS in particular in the tropics. The medium resolution (MR) MPI-ESM initializations are characterized by reduced temperature biases in the uninitialized runs as compared to observations and a better capturing of the high latitude northern hemisphere interannual polar vortex variability as compared to the LR model version. Negative skills are found for the b1-MR hindcasts however in the regions around the mid-latitude tropospheric jets on both hemispheres and in the vicinity of the tropical tropopause in comparison to the b1-LR variant. It is interesting to highlight that none of the model experiments can reproduce the observed positive temperature trend in the tropical tropopause region since 2001 as seen by GPSRO data

    Fine structure, magnetic field and heating of sunspot penumbrae

    Full text link
    We interpret penumbral filaments as due to convection in field-free, radially aligned gaps just below the visible surface of the penumbra, intruding into a nearly potential field above. This solves the classical discrepancy between the large heat flux and the low vertical velocities observed in the penumbra. The presence of the gaps causes strong small-scale fluctuations in inclination, azimuth angle and field strength, but without strong forces acting on the gas. The field is nearly horizontal in a region around the cusp-shaped top of the gap, thereby providing an environment for Evershed flows. We identify this region with the recently discovered dark penumbral cores. Its darkness has the same cause as the dark lanes in umbral light-bridges, reproduced in numerical simulations by Nordlund and Stein (2005). We predict that the large vertical and horizontal gradients of the magnetic field inclination and azimuth in the potential field model will produce the net circular polarization seen in observations. The model also explains the significant elevation of bright filaments above their surroundings. It predicts that dark areas in the penumbra are of two different kinds: dark filament cores containing the most inclined (horizontal) fields, and regions between bright filaments, containing the least inclined field lines.Comment: submitted to A&
    • …
    corecore