12 research outputs found

    Inflammation-associated Cell Cycle–independent Block of Apoptosis by Survivin in Terminally Differentiated Neutrophils

    Get PDF
    Survivin has received great attention due to its expression in many human tumors and its potential as a therapeutic target in cancer. Survivin expression has been described to be cell cycle–dependent and restricted to the G2-M checkpoint, where it inhibits apoptosis in proliferating cells. In agreement with this current view, we found that survivin expression was high in immature neutrophils, which proliferate during differentiation. In contrast with immature cells, mature neutrophils contained only little or no survivin protein. Strikingly, these cells reexpressed survivin upon granulocyte/macrophage colony-stimulating factor (CSF) or granulocyte CSF stimulation in vitro and under inflammatory conditions in vivo. Moreover, survivin-deficient mature neutrophils were unable to increase their lifespan after survival factor exposure. Together, our findings demonstrate the following: (a) overexpression of survivin occurs in primary, even terminally differentiated cells and is not restricted to proliferating cells; and (b) survivin acts as an inhibitor of apoptosis protein in a cell cycle–independent manner. Therefore, survivin plays distinct and independent roles in the maintenance of the G2-M checkpoint and in apoptosis control, and its overexpression is not restricted to proliferating cells. These data provide new insights into the regulation and function of survivin and have important implications for the pathogenesis, diagnosis, and treatment of inflammatory diseases and cancer

    Expression of CD95 on mature leukocytes of MRL/lpr mice after transplantation of genetically modified bone marrow stem cells

    No full text
    Bone marrow transplantation (BMT) is commonly used for the treatment of severe haematological and immunological diseases. For instance, the autoimmune lymphoproliferative syndrome (ALPS) caused by a complete expression defect of CD95 (Fas, APO-1) can be cured by allogeneic BMT. However, since this therapy may not generate satisfactory results when only partially compatible donors are available, we were interested in the development of a potential alternative treatment by using lentiviral gene transfer of a normal copy of CD95 cDNA in hematopoietic stem cells. Here, we show that this approach applied to MRL/lpr mice results in the expression of functional CD95 receptors on the surface of lymphocytes, monocytes, and granulocytes. This suggests that correction of CD95 deficiency can be achieved by gene therapy

    RhoH/TTF negatively regulates leukotriene production in neutrophils

    No full text
    Leukotriene B(4) (LTB(4)) is an important proinflammatory lipid mediator generated by neutrophils upon activation. GM-CSF stimulation is known to enhance agonist-mediated LTB(4) production of neutrophils within minutes, a process called "priming". In this study, we demonstrate that GM-CSF also limits the production of LTB(4) by neutrophils via a transcriptional mechanism at later time points. We identified hemopoietic-specific Ras homologous (RhoH)/translocation three four (TTF), which was induced following GM-CSF stimulation in neutrophils, as a key regulator in this process. Neutrophils derived from RhoH/TTF-deficient (Rhoh(-/-)) mice demonstrated increased LTB(4) production upon activation compared with normal mouse neutrophils. Moreover, neutrophils from cystic fibrosis patients expressed enhanced levels of RhoH/TTF and generated less LTB(4) upon activation compared with normal human neutrophils. Taken together, these data suggest that RhoH/TTF represents an inducible feedback inhibitor in neutrophils that is involved in the limitation of innate immune responses

    Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense

    No full text
    Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria

    Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis

    No full text
    Autophagy-related gene (Atg) 5 is a gene product required for the formation of autophagosomes. Here, we report that Atg5, in addition to the promotion of autophagy, enhances susceptibility towards apoptotic stimuli. Enforced expression of Atg5-sensitized tumour cells to anticancer drug treatment both in vitro and in vivo. In contrast, silencing the Atg5 gene with short interfering RNA (siRNA) resulted in partial resistance to chemotherapy. Apoptosis was associated with calpain-mediated Atg5 cleavage, resulting in an amino-terminal cleavage product with a relative molecular mass of 24,000 (Mr 24K). Atg5 cleavage was observed independent of the cell type and the apoptotic stimulus, suggesting that calpain activation and Atg5 cleavage are general phenomena in apoptotic cells. Truncated Atg5 translocated from the cytosol to mitochondria, associated with the anti-apoptotic molecule Bcl-xL and triggered cytochrome c release and caspase activation. Taken together, calpain-mediated Atg5 cleavage provokes apoptotic cell death, therefore, represents a molecular link between autophagy and apoptosis--a finding with potential importance for clinical anticancer therapies

    Toxicity of eosinophil MBP is repressed by intracellular crystallization and promoted by extracellular aggregation.

    No full text
    International audienceEosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly
    corecore