75 research outputs found

    Metastasis: Wherefore Arf Thou?

    Get PDF
    SummaryThe small GTP-binding protein Arf6 is known to be an important regulator of the actin cytoskeleton and of cell motility associated with metastasis. A recent study identifies yet another role for Arf6 in metastasis — as a regulator of plasma-membrane-derived microvesicle release

    Structure–activity relationship studies of QS11, a small molecule Wnt synergistic agonist

    Get PDF
    Both the Wnt/β-catenin signaling pathway and small GTPases of the ADP-ribosylation factors (ARF) family play important roles in regulating cell development, homeostasis and fate. The previous report of QS11, a small molecule Wnt synergist that binds to ARF GTPase-activating protein 1 (ARFGAP1), suggests a role for ARFGAP1 in the Wnt/β-catenin pathway. However, direct inhibition of enzymatic activity of ARFGAP1 by QS11 has not been established. Whether ARFGAP1 is the only target that contributes to QS11's Wnt synergy is also not clear. Here we present structure-activity relationship (SAR) studies of QS11 analogs in two assays: direct inhibition of enzymatic activity of purified ARFGAP1 protein and cellular activation of the Wnt/β-catenin pathway. The results confirm the direct inhibition of ARFGAP1 by QS11, and also suggest the presence of other potential cellular targets of QS11

    Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. The definitive version was published in Journal of Cell Biology 188 (2010): 877-890, doi:10.1083/jcb.200906012.Focal adhesions (FAs) are mechanosensitive adhesion and signaling complexes that grow and change composition in response to myosin II–mediated cytoskeletal tension in a process known as FA maturation. To understand tension-mediated FA maturation, we sought to identify proteins that are recruited to FAs in a myosin II–dependent manner and to examine the mechanism for their myosin II–sensitive FA association. We find that FA recruitment of both the cytoskeletal adapter protein vinculin and the tyrosine kinase FA kinase (FAK) are myosin II and extracellular matrix (ECM) stiffness dependent. Myosin II activity promotes FAK/Src-mediated phosphorylation of paxillin on tyrosines 31 and 118 and vinculin association with paxillin. We show that phosphomimic mutations of paxillin can specifically induce the recruitment of vinculin to adhesions independent of myosin II activity. These results reveal an important role for paxillin in adhesion mechanosensing via myosin II–mediated FAK phosphorylation of paxillin that promotes vinculin FA recruitment to reinforce the cytoskeletal ECM linkage and drive FA maturation.This work was supported by NHLBI (C.M. Waterman and A.M. Pasapera; and grant HL093156 to D.D. Schlaepfer) and the Burroughs Wellcome Fund (E. Rericha)

    Regulation of thymocyte positive selection and motility by GIT2

    Get PDF
    Thymocytes are highly motile cells that migrate under the influence of chemokines in distinct thymic compartments as they mature. The motility of thymocytes is tightly regulated; however, the molecular mechanisms that control thymocyte motility are not well understood. Here we report that G protein–coupled receptor kinase-interactor 2 (GIT2) was required for efficient positive selection. Notably, Git2−/− double-positive thymocytes showed greater activation of the small GTPase Rac, actin polymerization and migration toward the chemokines CXCL12 (SDF-1) and CCL25 in vitro. By two-photon laser-scanning microscopy, we found that the scanning activity of Git2−/− thymocytes was compromised in the thymic cortex, which suggests GIT2 has a key role in regulating the chemokine-mediated motility of double-positive thymocytes.National Institutes of Health (U.S.) (R01AI064227)Leukemia & Lymphoma Society of Americ

    Transgenic mouse models for ADHD

    Get PDF

    Ueber Diphtalyl

    No full text

    Calmodulin protects cells from death under normal growth conditions and mitogenic starvation but plays a mediating role in cell death upon B-cell receptor stimulation

    No full text
    Calmodulin (CaM) is the main intracellular Ca(2+) sensor protein responsible for mediating Ca(2+) triggered processes. Chicken DT40 lymphoma B cells express CaM from the two genes, CaMI and CaMII. Here we report the phenotypes of DT40 cells with the CaMII gene knocked out. The disruption of the CaMII gene causes the intracellular CaM level to decrease by 60%. CaMII(−/−) cells grow more slowly and die more frequently as compared to wild type (wt) cells but do not exhibit significant differences in their cell cycle profile. Both phenotypes are more pronounced at reduced serum concentrations. Upon stimulation of the B-cell receptor (BCR), the resting Ca(2+) levels remain elevated after the initial transient in CaMII(−/−) cells. Despite higher Ca(2+) resting levels, the CaMII(−/−) cells are partially protected from BCR induced apoptosis indicating that CaM plays a dual role in apoptotic processes
    corecore