2,757 research outputs found

    Fault identification using multidisciplinary techniques at the Mars/Uranus Station antenna sites

    Get PDF
    A fault investigation was performed at the Mars and Uranus antenna sites at the Goldstone Deep Space Communications Complex in the Mojave desert. The Mars/Uranus Station consists of two large-diameter reflector antennas used for communication and control of deep-space probes and other missions. The investigation included interpretation of Landsat thematic mapper scenes, side-looking airborne radar transparencies, and both color-infrared and black-and-white aerial photography. Four photolineaments suggestive of previously undocumented faults were identified. Three generally discrete morphostratigraphic alluvial-fan deposits were also recognized and dated using geomorphic and soil stratigraphic techniques. Fourteen trenches were excavated across the four lineaments; the trenches show that three of the photolineaments coincide with faults. The last displacement of two of the faults occurred between about 12,000 and 35,000 years ago. The third fault was judged to be older than 12,000 years before present (ybp), although uncertainty remains. None of the surface traces of the three faults crosses under existing antennas or structures; however, their potential activity necessitates appropriate seismic retrofit designs and loss-prevention measures to mitigate potential earthquake damage to facilities and structures

    Field Estimates of Parentage Reveal Sexually Antagonistic Selection on Body Size in a Population of Anolis Lizards

    Get PDF
    Sexual dimorphism evolves when selection favors different phenotypic optima between the sexes. Such sexually antagonistic selection creates intralocus sexual conflict when traits are genetically correlated between the sexes and have sex‐specific optima. Brown anoles are highly sexually dimorphic: Males are on average 30% longer than females and 150% heavier in our study population. Viability selection on body size is known to be sexually antagonistic, and directional selection favors large male size whereas stabilizing selection constrains females to remain small. We build on previous studies of viability selection by measuring sexually antagonistic selection using reproductive components of fitness over three generations in a natural population of brown anoles. We estimated the number of offspring produced by an individual that survived to sexual maturity (termed RSV), a measure of individual fitness that includes aspects of both individual reproductive success and offspring survival. We found directional selection on male body size, consistent with previous studies of viability selection. However, selection on female body size varied among years, and included periods of positive directional selection, quadratic stabilizing selection, and no selection. Selection acts differently in the sexes based on both survival and reproduction and sexual conflict appears to be a persistent force in this species

    The island–mainland species turnover relationship

    Get PDF
    Many oceanic islands are notable for their high endemism, suggesting that islands may promote unique assembly processes. However, mainland assemblages sometimes harbour comparable levels of endemism, suggesting that island biotas may not be as unique as is often assumed. Here, we test the uniqueness of island biotic assembly by comparing the rate of species turnover among islands and the mainland, after accounting for distance decay and environmental gradients. We modelled species turnover as a function of geographical and environmental distance for mainland (M–M) communities of Anolis lizards and Terrarana frogs, two clades that have diversified extensively on Caribbean islands and the mainland Neotropics. We compared mainland–island (M–I) and island–island (I–I) species turnover with predictions of the M–M model. If island assembly is not unique, then the M–M model should successfully predict M–I and I–I turnover, given geographical and environmental distance. We found that M–I turnover and, to a lesser extent, I–I turnover were significantly higher than predicted for both clades. Thus, in the first quantitative comparison of mainland–island species turnover, we confirm the long-held but untested assumption that island assemblages accumulate biodiversity differently than their mainland counterparts

    Serum Amyloid P Component (SAP)-Like Protein From Botryllid Ascidians Provides a Clue to Amyloid Function

    Get PDF
    The HA-1 lectin isolated from Botrylloides leachii has an amino acid composition similar to that of mammalian serum amyloid protein (SAP). SAP is a universal component of mammalian amyloid deposits. Like SAP, HA-1 has a disc ultrastructure, and antibody to HA-1 binds both (a) to amyloidlike fibers deposited between rejected Botrylloides colonies and (b) to cerebral amyloid deposits in Alzheimer's disease brains. Deposition of protochordate amyloid within rejection sites and surrounding fouling organisms implies that these fibers function as barriers to allogeneic and infectious challenge. Similarly, mammalian amyloid may also function to contain inflammatory lesions and to limit the spread of certain infections. Pathological amyloidotic conditions in humans, such as Alzheimer's disease, may result from unregulated expression of this primitive encapsulation response

    Extreme and rapid bursts of functional adaptations shape bite force in amniotes

    Get PDF
    Adaptation is the fundamental driver of functional and biomechanical evolution. Accordingly, the states of biomechanical traits (absolute or relative trait values) have long been used as proxies for adaptations in response to direct selection. However, ignoring evolutionary history, in particular ancestry, passage of time and the rate of evolution, can be misleading. Here, we apply a recently developed phylogenetic statistical approach using significant rate shifts to detect instances of exceptional rates of adaptive changes in bite force in a large group of terrestrial vertebrates, the amniotes. Our results show that bite force in amniotes evolved through multiple bursts of exceptional rates of adaptive changes, whereby whole groups—including Darwin's finches, maniraptoran dinosaurs (group of non-avian dinosaurs including birds), anthropoids and hominins (fossil and modern humans)—experienced significant rate increases compared to the background rate. However, in most parts of the amniote tree of life, we find no exceptional rate increases, indicating that coevolution with body size was primarily responsible for the patterns observed in bite force. Our approach represents a template for future studies in functional morphology and biomechanics, where exceptional rates of adaptive changes can be quantified and potentially linked to specific ecological factors underpinning major evolutionary radiation

    Electronic interactions in fullerene spheres

    Get PDF
    The electron-phonon and Coulomb interactions inC60_{60}, and larger fullerene spheres are analyzed. The coupling between electrons and intramolecular vibrations give corrections ∼1−10\sim 1 - 10 meV to the electronic energies for C60_{60}, and scales as R−4R^{-4} in larger molecules. The energies associated with electrostatic interactions are of order ∼1−4\sim 1 - 4 eV, in C60_{60} and scale as R−1R^{-1}. Charged fullerenes show enhanced electron-phonon coupling, ∼10\sim 10 meV, which scales as R−2R^{-2}. Finally, it is argued that non only C60−_{60}^{-}, but also C60−−_{60}^{--} are highly polarizable molecules. The polarizabilities scale as R3R^3 and R4R^4, respectively. The role of this large polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure

    Crater lake cichlids individually specialize along the benthic-limnetic axis

    Get PDF
    A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic- as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence

    In-Situ Infrared Transmission Study of Rb- and K-Doped Fullerenes

    Full text link
    We have measured the four IR active C60C_{60} molecular vibrations in MxC60M_{x}C_{60} (M=K,Rb)(M = K, Rb) as a function of doping xx. We observe discontinuous changes in the vibrational spectra showing four distinct phases (presumably x=0,3,4x = 0, 3, 4, and 6). The 1427cm−11427cm^{-1} and 576cm−1576cm^{-1} modes show the largest changes shifting downward in frequency in four steps as the doping increases. Several new very weak modes are visible in the x=6x=6 phase and are possibly Raman modes becoming weakly optically active. We present quantitative fits of the data and calculate the electron-phonon coupling of the 1427cm−11427cm^{-1} IR mode.Comment: 3 pages, Figure 1 included, 3 more figures available by request. REVTEX v3.0 IRC60DO

    Midinfrared Conductivity in Orientationally Disordered Doped Fullerides

    Full text link
    The coupling between the intramolecular vibrational modes and the doped conduction electrons in M3C60M_3C_{60} is studied by a calculation of the electronic contributions to the phonon self energies. The calculations are carried out for an orientationally ordered reference solid with symmetry Fm3ˉmFm \bar{3} m and for a model with quenched orientational disorder on the fullerene sites. In both cases, the dispersion and symmetry of the renormalized modes is governed by the electronic contributions. The current current correlation functions and frequency dependent conductivity through the midinfrared are calculated for both models. In the disordered structures, the renormalized modes derived from even parity intramolecular phonons are resonant with the dipole excited single particle spectrum, and modulate the predicted midinfrared conductivity. The spectra for this coupled system are calculated for several recently proposed microscopic models for the electron phonon coupling, and a comparison is made with recent experimental data which demonstrate this effect.Comment: 32 pages + 9 postscript figures (on request), REVTeX 3.
    • …
    corecore