99 research outputs found

    Kapitel 24. Theorien des Wandels und der Gestaltung von Strukturen

    Get PDF
    Abschnitt 5 nimmt eine Bestandsaufnahme von Theorien vor, die in einem weiten Sinne Wandel untersuchen. „Theorien des Wandels“ ist ein Überbegriff für all diejenigen Theorien, die helfen, aktuelle Dynamiken der Klimakrise zu verstehen und sowohl die stattfindenden als auch die notwendigen Transformationen zu fassen

    Deqi sensations without cutaneous sensory input: results of an RCT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deqi is defined in relation to acupuncture needling as a sensory perception of varying character. In a recently published sham laser validation study, we found that subjects in the verum and the sham laser group experienced deqi sensations. Therefore, we aim to further analyze whether the perceptions reported in the two study arms were distinguishable and whether expectancy effects exhibited considerable impact on our results.</p> <p>Methods</p> <p>A detailed re-analysis focusing on deqi sensations was performed from data collected in a previously published placebo-controlled, double-blind, clinical cross-over trial for a sham laser evaluation. Thirty-four healthy volunteers (28 ± 10.7 years; 16 women, 18 men) received two laser acupuncture treatments at three acupuncture points LI4 (hégu), LU7 (liéque), and LR3 (táichong); once by verum laser and once using a sham device containing an inactive laser in randomized order. Outcome measures were frequency, intensity (evaluated by visual analogue scale; VAS), and quality of the subjects' sensations perceived during treatments (assessed with the "acupuncture sensation scale").</p> <p>Results</p> <p>Both, verum and the sham laser acupuncture result in similar deqi sensations with regard to frequency (p-value = 0.67), intensity (p-value = 0.71) and quality (p-values between 0.15 - 0.98). In both groups the most frequently used adjectives to describe these perceptions were "spreading", "radiating", "tingling", "tugging", "pulsing", "warm", "dull", and "electric". Sensations reported were consistent with the perception of deqi as previously defined in literature. Subjects' conviction regarding the effectiveness of laser acupuncture or the history of having received acupuncture treatments before did not correlate with the frequency or intensity of sensations reported.</p> <p>Conclusions</p> <p>Since deqi sensations, described as sensory perceptions, were elicited without any cutaneous sensory input, we assume that they are a product of non-specific effects from the overall treatment procedure. Expectancy-effects due to previous acupuncture experience and belief in laser acupuncture do not seem to play a major role in elicitation of deqi sensations. Our results give hints that deqi might be a central phenomenon of awareness and consciousness, and that its relevance should be taken into account, even in clinical trials. However, further research is required to understand mechanisms underlying deqi.</p

    Competition between Replicative and Translesion Polymerases during Homologous Recombination Repair in Drosophila

    Get PDF
    In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis

    Kapitel 2: Perspektiven zur Analyse und Gestaltung von Strukturen für ein klimafreundliches Leben

    Get PDF
    Kapitel 2 systematisiert entlang von vier Perspektiven in den Sozialwissenschaften weit verbreitete Theorien zur Analyse und Gestaltung von Strukturen klimafreundlichen Lebens. Das Kapitel möchte Leser_innen des Berichts bewusst machen, mit wie grundlegend unterschiedlichen Zugängen Forscher_innen Strukturen klimafreundlichen Lebens analysieren. Dies ist wichtig, um zu verstehen, dass es nie nur eine, sondern immer mehrere Perspektiven auf Strukturen klimafreundlichen Lebens gibt. Dieses Bewusstsein hilft, die Komplexität der Sozialwissenschaften und damit die Komplexität der Aufgabe – Strukturen für ein klimafreundliches Leben zu gestalten – zu erfassen. Unterschiedliche Zugänge zu sehen, bedeutet auch, ein besseres Verständnis von konfligierenden Problemdiagnosen, Zielhorizonten und Gestaltungsoptionen zu entwickeln und – idealerweise – damit umgehen zu können

    Competitive Repair by Naturally Dispersed Repetitive DNA during Non-Allelic Homologous Recombination

    Get PDF
    Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR–dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR–dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer

    The Retrohoming of Linear Group II Intron RNAs in Drosophila melanogaster Occurs by Both DNA Ligase 4–Dependent and –Independent Mechanisms

    Get PDF
    Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3′ end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications

    Heterochromatic Genome Stability Requires Regulators of Histone H3 K9 Methylation

    Get PDF
    Heterochromatin contains many repetitive DNA elements and few protein-encoding genes, yet it is essential for chromosome organization and inheritance. Here, we show that Drosophila that lack the Su(var)3-9 H3K9 methyltransferase display significantly elevated frequencies of spontaneous DNA damage in heterochromatin, in both somatic and germ-line cells. Accumulated DNA damage in these mutants correlates with chromosomal defects, such as translocations and loss of heterozygosity. DNA repair and mitotic checkpoints are also activated in mutant animals and are required for their viability. Similar effects of lower magnitude were observed in animals that lack the RNA interference pathway component Dcr2. These results suggest that the H3K9 methylation and RNAi pathways ensure heterochromatin stability

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes

    Get PDF
    Homologous recombination is required for maintaining genomic integrity by functioning in high-fidelity repair of DNA double-strand breaks and other complex lesions, replication fork support, and meiotic chromosome segregation. Joint DNA molecules are key intermediates in recombination and their differential processing determines whether the genetic outcome is a crossover or non-crossover event. The Holliday model of recombination highlights the resolution of four-way DNA joint molecules, termed Holliday junctions, and the bacterial Holliday junction resolvase RuvC set the paradigm for the mechanism of crossover formation. In eukaryotes, much effort has been invested in identifying the eukaryotic equivalent of bacterial RuvC, leading to the discovery of a number of DNA endonucleases, including Mus81–Mms4/EME1, Slx1–Slx4/BTBD12/MUS312, XPF–ERCC1, and Yen1/GEN1. These nucleases exert different selectivity for various DNA joint molecules, including Holliday junctions. Their mutant phenotypes and distinct species-specific characteristics expose a surprisingly complex system of joint molecule processing. In an attempt to reconcile the biochemical and genetic data, we propose that nicked junctions constitute important in vivo recombination intermediates whose processing determines the efficiency and outcome (crossover/non-crossover) of homologous recombination

    A stable genomic source of P element transposase in Drosophila melanogaster

    Get PDF
    A single P element insert in Drosophila melanogoster, called P[ry+A2-3](99B), is described that causes mobilization of other elements at unusually high frequencies, yet is itself remarkably stable. Its transposase activity is higher than that of an entire P strain, but it rarely undergoes internal deletion, excision or transposition. This element was constructed by F. Laski, D. Rio and G. Rubin for other purposes, but we have found it to be useful for experiments involving P elements. We demonstrate that together with a chromosome bearing numerous nonautonomous elements it can be used for P element mutagenesis. It can also substitute efficiently for ???helper??? plasmids in P element mediated transformation, and can be used to move transformed elements around the genome.published or submitted for publicationis peer reviewe
    corecore