24 research outputs found

    The unknown third – Hydrogen isotopes in tree-ring cellulose across Europe

    Get PDF
    This is the first Europe-wide comprehensive assessment of the climatological and physiological information recorded by hydrogen isotope ratios in tree-ring cellulose (δ2Hc) based on a unique collection of annually resolved 100-year tree-ring records of two genera (Pinus and Quercus) from 17 sites (36°N to 68°N). We observed that the high-frequency climate signals in the δ2Hc chronologies were weaker than those recorded in carbon (δ13Cc) and oxygen isotope signals (δ18Oc) but similar to the tree-ring width ones (TRW). The δ2Hc climate signal strength varied across the continent and was stronger and more consistent for Pinus than for Quercus. For both genera, years with extremely dry summer conditions caused a significant 2H-enrichment in tree-ring cellulose. The δ2Hc inter-annual variability was strongly site-specific, as a result of the imprinting of climate and hydrology, but also physiological mechanisms and tree growth. To differentiate between environmental and physiological signals in δ2Hc, we investigated its relationships with δ18Oc and TRW. We found significant negative relationships between δ2Hc and TRW (7 sites), and positive ones between δ2Hc and δ18Oc (10 sites). The strength of these relationships was nonlinearly related to temperature and precipitation. Mechanistic δ2Hc models performed well for both genera at continental scale simulating average values, but they failed on capturing year-to-year δ2Hc variations. Our results suggest that the information recorded by δ2Hc is significantly different from that of δ18Oc, and has a stronger physiological component independent from climate, possibly related to the use of carbohydrate reserves for growth. Advancements in the understanding of 2H-fractionations and their relationships with climate, physiology, and species-specific traits are needed to improve the modelling and interpretation accuracy of δ2Hc. Such advancements could lead to new insights into trees' carbon allocation mechanisms, and responses to abiotic and biotic stress conditions

    Tagesgang der H2H_{2} 18^{18}O-Anreicherung im Blattwasser von Eiche und Birke

    No full text
    The work presents a detailed day course of the H2_{2} 18^{18}O enrichment within the leaf water of an oak and a birch. Three phases can be distinguished. After a rapid increase during the morning the H2_{2} 18^{18}O content falls during the afternoon and shows a very small decrease during the time of 100 % relative humidity at night. The two species do not navy significantly

    Kontinuierliche Atmungsmessungen bei E. coli

    No full text
    Escherichia coli wild type is grown in a gas tight batch culture. The oxygen partial pressure is measured continuously in the liquid phase during the growth of the bacteria. The system allows the observation of rapid changes of the respiration rate. Thereby we found a diauxic respiration behavior with glucose as the only carbon source in a pure mineral salt medium. The second respiration phase is caused by a substance secreted into the medium during the uptake of glucose. The presence of glucose in the medium stops the metabolic uptake of this secretion product

    European tree-ring isotopes indicate unusual recent hydroclimate

    Get PDF
    In recent decades, Europe has experienced more frequent flood and drought events. However, little is known about the long-term, spatiotemporal hydroclimatic changes across Europe. Here we present a climate field reconstruction spanning the entire European continent based on tree-ring stable isotopes. A pronounced seasonal consistency in climate response across Europe leads to a unique, well-verified spatial field reconstruction of European summer hydroclimate back to AD 1600. We find three distinct phases of European hydroclimate variability as possible fingerprints of solar activity (coinciding with the Maunder Minimum and the end of the Little Ice Age) and pronounced decadal variability superimposed by a long-term drying trend from the mid-20th century. We show that the recent European summer drought (2015–2018) is highly unusual in a multi-century context and unprecedented for large parts of central and western Europe. The reconstruction provides further evidence of European summer droughts potentially being influenced by anthropogenic warming and draws attention to regional differences

    A past and present perspective on the European summer vapor pressure deficit

    Get PDF
    The response of evapotranspiration to anthropogenic warming is of critical importance for the water and carbon cycle. Contradictory conclusions about evapotranspiration changes are caused primarily by their brevity in time and sparsity in space, as well as the strong influence of internal variability. Here, we present the first gridded reconstruction of the summer (June, July, and August) vapor pressure deficit (VPD) for the past 4 centuries at the European level. This gridded reconstruction is based on 26 European tree ring oxygen isotope records and is obtained using a random forest approach. According to validation scores obtained with the Nash-Sutcliffe model efficiency, our reconstruction is robust over large parts of Europe since 1600, in particular for the westernmost and northernmost regions, where most tree ring records are located. Based on our reconstruction, we show that from the mid-1700s a trend towards higher summer VPD occurred in central Europe and the Mediterranean region that is related to a simultaneous increase in temperature and decrease in precipitation. This increasing summer VPD trend continues throughout the observational period and in recent times. Moreover, our summer VPD reconstruction helps to visualize the local and regional impacts of the current climate change, as well as to minimize statistical uncertainties of historical VPD variability. This paper provides also new insights into the relationship between summer VPD and large-scale atmospheric circulation, and we show that summer VPD has two preferred modes of variability, namely a NW-SE dipole-like mode and a N-S dipole-like mode. Furthermore, the interdisciplinary use of the data should be emphasized, as summer VPD is a crucial parameter for many climatological feedback processes in the Earth's surface system. The reconstructed summer VPD gridded data over the last 400 years are available at the following link: 10.5281/zenodo.5958836 (Balting et al., 2022)

    Large-scale climate signals of a European oxygen isotope network from tree rings

    No full text
    We investigate the climate signature of δ18O tree-ring records from sites distributed all over Europe covering the last 400 years. An empirical orthogonal function (EOF) analysis reveals two distinct modes of variability on the basis of the existing δ18O tree-ring records. The first mode is associated with anomaly patterns projecting onto the El Niño–Southern Oscillation (ENSO) and reflects a multi-seasonal climatic signal. The ENSO link is pronounced for the last 130 years, but it is found to be weak over the period from 1600 to 1850, suggesting that the relationship between ENSO and the European climate may not be stable over time. The second mode of δ18O variability, which captures a north–south dipole in the European δ18O tree-ring records, is related to a regional summer atmospheric circulation pattern, revealing a pronounced centre over the North Sea. Locally, the δ18O anomalies associated with this mode show the same (opposite) sign with temperature (precipitation). Based on the oxygen isotopic signature derived from tree rings, we argue that the prevailing large-scale atmospheric circulation patterns and the related teleconnections can be analysed beyond instrumental records

    Hydrological variability and explosive volcanic activity in southeastern Patagonia during Oxygen Isotope Stage 3 and the Holocene inferred from lake sediments of Laguna Potrok Aike

    Get PDF
    Seismic reflection studies in the maar lake Laguna Potrok Aike (51 degrees 58' S, 70 degrees 23' W) revealed an erosional unconformity associated with a sub-aquatic lake-level terrace at a water depth of 30m. Radiocarbon-dated, multi-proxy sediment studies of a piston core from this location indicate that the sediment below this discontinuity has an age of 45kyr BP (Oxygen Isotope Stage 3), and was deposited during an interval of high lake level. In comparison to the Holocene section, geochemical indicators of this older part of the record either point towards a different sediment source or to a different transport mechanism for Oxygen Isotope Stage 3 sediments. Holocene sedimentation started again before 6790cal. yr BP, providing a sediment record of hydrological variability until the present. Geochemical and isotopic data indicate a fluctuating lake level until 5310cal. yr BP. During the late Holocene the lake level shows a receding tendency. Nevertheless, the lake level did not drop below the 30m terrace to create another unconformity. The geochemical characterization of volcanic ashes reveals evidence for previously unknown explosive activity of the Reclus and Mt. Burney volcanoes during Oxygen Isotope Stage 3. (c) 2007 Elsevier B.V. All rights reserved
    corecore